精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=lnx-px+1,p为常数(p>0),$g(x)=\frac{3}{2}a{x^2}-xlnx-(3a-1)x+\frac{3}{2}a-1$.
(1)若对任意的x>0,恒有f(x)≤0,求p的取值范围;
(2)对任意的x∈[1,+∞),函数g(x)≥0恒成立,求实数a的取值范围.

分析 (1)化简f(x)≤0,构造函数令$g(x)=\frac{lnx+1}{x}$,通过函数的导数,判断函数的单调性,求出最值,即可得到结果.
(2)对任意的x∈[1,+∞),函数g(x)≥0恒成立,求出函数的导数,令h(x)=g′(x),再求解函数的导数,通过10当a≤0,20当$a≥\frac{1}{3}$,30a∈(0,$\frac{1}{3}$),分别请假函数的最值,利用恒成立,请假即可.

解答 解:(1)$f(x)≤0⇒p≥\frac{lnx+1}{x}$,
令$g(x)=\frac{lnx+1}{x}$,则${g^'}(x)=\frac{-lnx}{x^2}$,
∴x∈(0,1),g(x)↑,x∈(1,+∞),g(x)↓,
∴g(x)max=g(1)=1,
∴p≥1.
(2)g′(x)=3ax-lnx-3a,
令h(x)=g′(x),
则${h^'}(x)=\frac{3ax-1}{x}$,g(1)=0,g′(1)=0,
10当a≤0,x∈[1,+∞),h′(x)≤0⇒h(x)↓
又h(1)=g′(1)=0⇒g′(x)=h(x)≤0⇒g(x)↓⇒g(x)≤0(x∈[1,+∞)),
不符合题意,舍,
20当$a≥\frac{1}{3}$,x∈[1,+∞),h′(x)≥0⇒h(x)↑
又h(1)=g′(1)=0⇒g′(x)=h(x)≥0⇒g(x)↑⇒g(x)≥0(x∈[1,+∞)),
30a$∈(0,\frac{1}{3})$,x∈[1,+∞),${h^'}(x)=0⇒x=\frac{1}{3a}>1$$⇒x∈(1,\frac{1}{3a})$时h′(x)<0,
∴$x∈(1,\frac{1}{3a})$时,g′(x)=h(x)↓,又g(1)=0,
∴$x∈(1,\frac{1}{3a}]$时,g(x)≤0
(必须证明,如果只证明$a≥\frac{1}{3}$符合题意,没有证明另外情况不符合题意的减3到5分)

点评 本题考查函数的导数的综合应用,函数的最值以及函数的单调性的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x-1)=$\frac{x}{x+1}$,则函数f(x)的解析式为(  )
A.f(x)=$\frac{x+1}{x+2}$B.f(x)=$\frac{x}{x+1}$C.f(x)=$\frac{x-1}{x}$D.f(x)=$\frac{1}{x+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直角梯形ABEF,∠A=∠B=90°,AB=1,BE=2,AF=3,C为BE的中点,AD=1,如图(1),沿直线CD折成直二面角,连结部分线段后围成一个空间几何体(如图2)
(1)求异面直线BD与EF所成角的大小.
(2)设AD的中点为G,求二面角G-BF-E的余弦值.
(3)求过A、B、C、D、E这五个点的球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式组x,y满足$\left\{\begin{array}{l}{2x+3y≤0}\\{x-y≥0}\\{y≥-2}\end{array}\right.$,所围成的平面区域面积是(  )
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若M={(x,y)|(x+4)2+(y+4)2=8},N={(x,y)|(x-1)2+(y-1)2=r2(r>0)},且M∩N=∅,则r范围可以是(  )
A.(0,3$\sqrt{2}$)B.(3$\sqrt{2}$,+∞)C.(-∞,3$\sqrt{2}$)D.(0,$\sqrt{2}$)∪(3$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.100个个体分成10组,编号后分别为第1组:00,01,02,…,09;第2组:10,11,12,…,19;…;第10组“90,91,92,…,99.抽取规则如下,第k组中抽取的号码的个位数与(k+m-1)的个位数相同,其中m是第1组随机抽取的号码的个位数,则方m=5时,从第8组中抽取的号码是72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=$\sqrt{2}$,AF=2BF,若CE与圆相切,且CE=$\frac{\sqrt{7}}{2}$,则BE的长为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,真命题的编号是①②③(写出所有真命题的编号)
①点H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延长线经过点C1
④直线AH和BB1所成角为45°
⑤平面A1BD与底面A1B1C1D1所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若奇函数f(x)=xcosx+c的定义域为[a,b],则a+b+c=0.

查看答案和解析>>

同步练习册答案