精英家教网 > 高中数学 > 题目详情
4.已知函数f(x-1)=$\frac{x}{x+1}$,则函数f(x)的解析式为(  )
A.f(x)=$\frac{x+1}{x+2}$B.f(x)=$\frac{x}{x+1}$C.f(x)=$\frac{x-1}{x}$D.f(x)=$\frac{1}{x+2}$

分析 利用换元法,令t=x-1,x=t+1,带入原函数就行化简计算即可.

解答 解:由题意:函数f(x-1)=$\frac{x}{x+1}$,
令t=x-1,则x=t+1,
那么:函数f(x-1)=$\frac{x}{x+1}$转化为g(t)=$\frac{t+1}{t+2}$,
∴函数f(x)的解析式为:f(x)=$\frac{x+1}{x+2}$.
故选A.

点评 本题考查了函数解析式的求法,利用了换元法求解.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设实数x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,则3x+2y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知倾斜角为α的直线l过x轴上一点A(非坐标原点O),直线l上有一点P(cos130°,sin50°),且∠APO=30°,则α等于(  )
A.100°B.160°C.100°或160°D.130°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设命题p:函数f(x)=3x-$\frac{4}{x}$在区间(1,$\frac{3}{2}}$)内有零点;命题q:设f'(x)是函数f(x)的导函数,若存在x0使f'(x0)=0,则x0为函数f(x)的极值点.下列命题中真命题是(  )
A.p且qB.p或qC.(非p)且qD.(非p)或q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3loga(4x-7)+2(a>0且a≠1)过定点P,则P点坐标(  )
A.(1,2)B.($\frac{7}{4}$,2)C.(2,2)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知AB为圆O的直径,M为圆O的弦CD上一动点,AB=8,CD=6,则$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围是[-9,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=x-$\sqrt{3x-2}$的值域为(  )
A.$[{\frac{2}{3},+∞})$B.$({\frac{2}{3},+∞})$C.$[{-\frac{1}{12},+∞})$D.$({-\frac{1}{12},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(2,3),且右焦点为圆C:(x-2)2+y2=2的圆心.
(1)求椭圆E的标准方程;
(2)设P是椭圆E上在y轴左侧的一点,过点P作圆C的两条切线,切点分别为A、B,且两切线的斜率之积为$\frac{1}{2}$,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx-px+1,p为常数(p>0),$g(x)=\frac{3}{2}a{x^2}-xlnx-(3a-1)x+\frac{3}{2}a-1$.
(1)若对任意的x>0,恒有f(x)≤0,求p的取值范围;
(2)对任意的x∈[1,+∞),函数g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案