| A. | (0,3$\sqrt{2}$) | B. | (3$\sqrt{2}$,+∞) | C. | (-∞,3$\sqrt{2}$) | D. | (0,$\sqrt{2}$)∪(3$\sqrt{2}$,+∞) |
分析 判断出集合M、N的几何意义,再由圆与圆的位置关系和交集的运算,列出不等式求出r的范围.
解答 解:M={(x,y)|(x+4)2+(y+4)2=8},N={(x,y)|(x-1)2+(y-1)2=r2(r>0)},
所以集合M是以(-4,-4)为圆心,$\sqrt{8}$为半径的圆,
集合N是以(1,1)为圆心,r为半径的圆,
由M∩N=∅得两个圆外离或内含,
所以$\sqrt{8}$+r<$\sqrt{{(1+4)}^{2}{+(1+4)}^{2}}$=5$\sqrt{2}$
或|$\sqrt{8}$-r|>5$\sqrt{2}$,
解得r>7$\sqrt{2}$或0<r<3$\sqrt{2}$,
故选:A.
点评 本题考查交集以及运算,圆与圆的位置关系的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | ($\frac{7}{4}$,2) | C. | (2,2) | D. | (3,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+y2=3 | B. | y=$\sqrt{1-{x}^{2}}$ | C. | x2+2xy=1(x≠±1) | D. | x2+y2=9(x≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [0,1] | C. | (0,2] | D. | [0,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com