精英家教网 > 高中数学 > 题目详情
11.若奇函数f(x)=xcosx+c的定义域为[a,b],则a+b+c=0.

分析 根据奇函数f(x)的定义域关于原点对称,可得a+b=0,又由f(-x)=-f(x),可得c=0.

解答 解:由奇函数f(x)=xcosx+c的定义域为[a,b],
得a+b=0,
又由f(-x)=-f(x),
即-xcos(-x)+c=-(xcosx+c)得:
c=0,
∴a+b+c=0.
故答案为:0.

点评 本题考查函数奇偶性的性质,熟练掌握奇函数f(x)的定义域关于原点对称,及f(-x)=-f(x)是解答的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx-px+1,p为常数(p>0),$g(x)=\frac{3}{2}a{x^2}-xlnx-(3a-1)x+\frac{3}{2}a-1$.
(1)若对任意的x>0,恒有f(x)≤0,求p的取值范围;
(2)对任意的x∈[1,+∞),函数g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=xex+2x+1在点(0,1)处的切线方程为(  )
A.x∈RB.y=3x+1C.x∈RD.x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=2x-a2-a在(-∞,1]上存在零点,则正实数a的取值范围是(  )
A.(0,1]B.[0,1]C.(0,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:椭圆C过点A(1,$\frac{3}{2}$),两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE和AF关于x=1对称,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=|2x-1|的定义域和值域都是[a,b](b>a),则f(a)+f(b)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$).
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,设点P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

同步练习册答案