精英家教网 > 高中数学 > 题目详情
20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

分析 根据三角函数的图象与性质,得出A、T、ω与φ的值,即可写出函数f(x)的解析式.

解答 解:由题意可知A=2,
T=2($\frac{2π}{3}$-$\frac{π}{6}$)=π,
∴ω=$\frac{2π}{T}$=2;
又当x=$\frac{π}{6}$时f(x)=-2,
∴2sin(2×$\frac{π}{6}$+φ)=-2,
∴sin($\frac{π}{3}$+φ)=-1,
∴$\frac{π}{3}$+φ=2kπ-$\frac{π}{2}$,k∈Z;
又φ∈(-π,π),
∴φ=-$\frac{5π}{6}$,
∴函数f(x)的解析式为f(x)=2sin(2x-$\frac{5π}{6}$).
故答案为:f(x)=2sin(2x-$\frac{5π}{6}$).

点评 本题主要考查了根据函数y=Asin(ωx+φ)的部分图象求解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,真命题的编号是①②③(写出所有真命题的编号)
①点H是△A1BD的垂心    
②AH垂直平面CB1D1
③AH的延长线经过点C1
④直线AH和BB1所成角为45°
⑤平面A1BD与底面A1B1C1D1所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若奇函数f(x)=xcosx+c的定义域为[a,b],则a+b+c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,且点分别为A、B,若∠APB=60°,O为坐标原点,则OP的长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用5种不同颜色给图中的4个区域涂色,每个区域涂1种颜色,相邻区域不能同色,求不同的涂色方法共有多少种(  )
A.120B.150C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.设g(x)=lnx+$\frac{m}{x}$,
(1)求a的值;
(2)对任意x1>x2>0,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<1恒成立,求实数m的取值范围;
(3)讨论方程g(x)=f(x)+ln(x+1)在[1,+∞)上根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足(1+i)•z=1-2i3(i为虚数单位),则复数z对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=$\frac{\sqrt{3}}{2}$,那么原△ABC中∠ABC的大小是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案