精英家教网 > 高中数学 > 题目详情
9.设复数z满足(1+i)•z=1-2i3(i为虚数单位),则复数z对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 化简复数为:a+bi的形式,求出对应点的坐标,即可判断选项.

解答 解:复数z满足(1+i)•z=1-2i3
可得z=$\frac{1+2i}{1+i}$=$\frac{(1+2i)(1-i)}{(1+i)(1-i)}$=$\frac{3+i}{2}$,
复数对应点的坐标($\frac{3}{2},\frac{1}{2}$)在第一象限.
故选:A.

点评 本题考查复数的代数形式混合运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(\frac{1}{x}+2)$的定义域是{x|-1≤x≤3且x≠0},则函数f(x+2)的定义域为(  )
A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线xsin 30°+ycos 150°+1=0的斜率是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列命题中为真命题的有(1).
(1)命题“若α=β,则tanα=tanβ”的逆否命题为假命题;
(2)“x>1”是“x2-1>0”的必要不充分条件;
(3)“m>0>n”是$\frac{1}{m}$>$\frac{1}{|n|}$的充分不必要条件;
(4)命题“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,若a5=6,a3=2,则公差为(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$).
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,设点P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,首项a1=-20,公差d=3,则|a1|+|a2|+|a3|+…+|a11|=(  )
A.99B.100C.-55D.98

查看答案和解析>>

同步练习册答案