精英家教网 > 高中数学 > 题目详情
10.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=$\frac{\sqrt{3}}{2}$,那么原△ABC中∠ABC的大小是(  )
A.30°B.45°C.60°D.90°

分析 根据斜二侧画法还原直线△ABC在直角坐标系的图形,进而分析出△ABC的形状,可得结论.

解答 解:根据“斜二测画法”可得BC=B′C′=2,AO=2A′O′=$\sqrt{3}$.
故原△ABC是一个等边三角形.
故选C.

点评 本题考查的知识点是斜二侧画法,三角形形状的判断,解答的关键是斜二侧画法还原直线△ABC在直角坐标系的图形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如图所示,则函数表达式为f(x)=2sin(2x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$).
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,设点P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下选项正确的是③④.
 ①方程y=kx+2可表示经过点(0,2)的所有直线
②过点P(3,-4),且截距相等的直线方程为x+y-1=0
③函数y=$\sqrt{{x^2}+1}$+$\sqrt{{x^2}-4x+13}$的最小值为2$\sqrt{5}$
④若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段长为2$\sqrt{2}$,则m的倾斜角可以是15°或75°
⑤点P(4,-2)与圆x2+y2=4上任一点连线段的中点轨迹方程为(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线y2=12x上与焦点的距离等于6的点的坐标是(3,6)或(3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=Asin(ωx+φ),(A>0,ω>0,φ∈(0,π)),其导函数f'(x)的部分图象如图所示,则下列对f(x)的说法正确的是(  )
A.最大值为4且关于直线$x=-\frac{π}{2}$对称
B.最大值为4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上单调递增
C.最大值为2且关于点$({-\frac{π}{2}\;\;,\;\;0})$中心对称
D.最大值为2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,首项a1=-20,公差d=3,则|a1|+|a2|+|a3|+…+|a11|=(  )
A.99B.100C.-55D.98

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的长.

查看答案和解析>>

同步练习册答案