分析 设$\overrightarrow{a}$=(x,y),由$|\overrightarrow a|=5,\overrightarrow b=(6,8)$,满足$\overrightarrow a∥\overrightarrow b且\overrightarrow a≠\overrightarrow b$,可得$\sqrt{{x}^{2}+{y}^{2}}$=5,6y-8x=0,解出即可得出.
解答 解:设$\overrightarrow{a}$=(x,y),∵$|\overrightarrow a|=5,\overrightarrow b=(6,8)$,满足$\overrightarrow a∥\overrightarrow b且\overrightarrow a≠\overrightarrow b$,
∴$\sqrt{{x}^{2}+{y}^{2}}$=5,6y-8x=0,
解得$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$.
则$\overrightarrow a$=(3,4),或(-3,-4).
故答案为:(3,4),或(-3,-4).
点评 本题考查了向量共线定理、数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x2+y2=3 | B. | y=$\sqrt{1-{x}^{2}}$ | C. | x2+2xy=1(x≠±1) | D. | x2+y2=9(x≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3≤x≤1且x≠-2} | B. | $\{x|x≤-1或x≥\frac{1}{3}\}$ | C. | {x|-1≤x≤3且x≠0} | D. | $\{x|-1≤x≤\frac{1}{3}且x≠0\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [0,1] | C. | (0,2] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com