精英家教网 > 高中数学 > 题目详情
9.已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和,求$\frac{T_n}{n+2}$的最大值.

分析 (1)由等差数列的通项公式可知:$\left\{\begin{array}{l}{4{a}_{1}+6d=14}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,即可求得a1和d,即可求得数列{an}的通项公式;
(2)由(1)可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,利用“裂项法”即可求得数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn,$\frac{T_n}{n+2}$=$\frac{n}{2(n+2)^{2}}$=$\frac{1}{2(n+\frac{4}{n}+4)}$,由基本不等式的性质,即可求得$\frac{T_n}{n+2}$的最大值.

解答 解:(1)设等差数列公差为d.由已知得$\left\{\begin{array}{l}{4{a}_{1}+6d=14}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$或$\left\{\begin{array}{l}{d=0}\\{{a}_{1}=\frac{7}{2}}\end{array}\right.$ (舍去) 
∴an=a1+(n-1)d=n+1,
数列{an}的通项公式an=n+1;
(2)由(1)可知:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∵数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn,Tn=($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$),
=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$,
=$\frac{1}{2}$-$\frac{1}{n+2}$,
=$\frac{n}{2(n+2)}$
∴$\frac{T_n}{n+2}$=$\frac{n}{2(n+2)^{2}}$=$\frac{1}{2(n+\frac{4}{n}+4)}$≤$\frac{1}{2(2\sqrt{n×\frac{4}{n}}+4)}$=$\frac{1}{16}$,
当且仅当n=$\frac{4}{n}$,解得:n=2,
∴$\frac{T_n}{n+2}$的最大值$\frac{1}{16}$.

点评 本题考查等差数列的通项公式及前n项和公式,考查“裂项法”求数列的前n项,基本不等式的应用,考查数列与不等式的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.a是平面α外的一条直线,过a作平面β,使β∥α,这样的平面β(  )
A.只能作一个B.不存在C.至多可以作一个D.至少可以作一个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a=2”是“函数f(x)=|x-a|在[3,+∞)上是增函数”的(  )
A.必要非充分条件B.充分非必要条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1
(1)若$f(x)=0,求cos(x+\frac{π}{3})$的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足$(2a-\sqrt{3}c)cosB=\sqrt{3}bcosC$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,a16+a17+a18=a9=-36,其前n项和为Sn
(1)求Sn的最小值,并求出取Sn的最小值时n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$|\overrightarrow a|=5,\overrightarrow b=(6,8)$,满足$\overrightarrow a∥\overrightarrow b且\overrightarrow a≠\overrightarrow b$,则$\overrightarrow a$=(3,4),或(-3,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦点F2向其一条渐近线作垂线l,垂足为P,l与另一条渐近线交于Q点,若$\overrightarrow{Q{F}_{2}}$=3$\overrightarrow{P{F}_{2}}$,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\frac{4}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,值域为(0,+∞)的函数是(  )
A.f(x)=$\sqrt{x}$B.f(x)=lnxC.f(x)=($\frac{1}{2}$)xD.f(x)=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的前n项和为Sn,若a1+a4+a7=7,则S7=$\frac{49}{3}$.

查看答案和解析>>

同步练习册答案