精英家教网 > 高中数学 > 题目详情
2.已知a是实数,函数f(x)=2a|x|+2x-a,若函数y=f(x)有且仅有两个零点,则实数a的取值范围是a<-1或a>1.

分析 先对f(x)去绝对值,由两段射线有两个零点,得到分类讨论.

解答 解:∵函数f(x)=2a|x|+2x-a=$\left\{\begin{array}{l}{2(1+a)x-a\\;x≥0}\\{2(1-a)x-a\\;x<0}\end{array}\right.$
且函数f(x)过定点(0,-a)
∴①-a>0时,需满足
$\left\{\begin{array}{l}{a+1<0}\\{1-a>0}\end{array}\right.$
此时解得:a<-1,
②当-a<0时,需满足
$\left\{\begin{array}{l}{a+1>0}\\{1-a<0}\end{array}\right.$
此时解得:a>1,
综上所述:a<-1或a>1.
故答案为:a>1或a<-1.

点评 由一次函数的图象特点,得到分类讨论,由此得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为$\frac{4\sqrt{5}}{3}$和$\frac{2\sqrt{5}}{3}$,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.
(2)双曲线的焦距是实轴长的$\sqrt{5}$倍,且一个顶点的坐标为(0,2),求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长是短轴长的两倍,焦距为2$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{lnx}{x}$与函数g(x)=kx的图象上存在关于原点对称的点,则实数k的最大值是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x),判断下列选项正确的是(  )
A.f(x)的单调减区间是($\frac{2}{3}$,2)
B.f(x)的极小值是-15
C.当a>2时,对任意的x>2且x≠a,恒有f(x)<f(a)+f′(a)(x-a)
D.函数f(x)有且只有两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某中学高三文科班学生共800人参加了数学与地理的水平测试,学校决定利用随机数表从总抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你一次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,
①若在该样本中,数学成绩优秀率30%,求a,b的值.
人数数学
优秀良好及格
地理优秀7205
良好9186
及格a4b
②在地理成绩及格的学生中,已知a≥10,b≥8,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=4,anan-1-4an-1+4=0(n≥2).
(1)求证:$\{\frac{1}{{{a_n}-2}}\}$为等差数列;
(2)求数列{an}的通项公式;
(3)若对任意的n∈N*,3nk-nan+6≥0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点P是△ABC内一点,设$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0),则m、n还需满足的条件是(  )
A.m+n>0B.m+n<1C.m+n=1D.m+n>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,矩形ABCD和△ABP所在的平面互相垂直,AB=2AD=2,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若多面体ABCDP的体积是$\frac{2\sqrt{6}}{9}$,求直线PD与平面ABCD所成的角.

查看答案和解析>>

同步练习册答案