精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长是短轴长的两倍,焦距为2$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.

分析 (1)由椭圆的长轴长是短轴长的两倍,焦距为2$\sqrt{3}$,列出方程组能求出椭圆C的标准方程.
(2)由题意设直线l的方程为y=kx+m,(km≠0),联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+4kmx+4(m2-1)=0,由此利用根的判别式、韦达定理、等比数列、椭圆性质,结合已知条件能求出直线l不定向.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长是短轴长的两倍,焦距为2$\sqrt{3}$,
∴$\left\{\begin{array}{l}{2a=2×2b}\\{2c=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)由题意设直线l的方程为y=kx+m,(km≠0),
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+4kmx+4(m2-1)=0,
△=16(4k2-m2+1)>0,
设M(x1,y1),N(x2,y2),则${x}_{1}+{x}_{2}=-\frac{4km}{1+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{4({m}^{2}-1)}{1+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=${k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$,
∵直线OM,MN,ON的斜率依次成等比数列,
∴$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}=\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$=k2
∴-$\frac{8{k}^{2}{m}^{2}}{1+4{k}^{2}}$+m2=0,
∵m≠0,∴k2=$\frac{1}{4}$,方向向量$\overrightarrow{d}$=(±2,1).
∴直线l不定向.

点评 本题考查椭圆方程的求法,考查直线是否定向的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、等比数列、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=($\frac{1}{2}$)|x|-sin|x|在区间[-π,π]上的零点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{ax}{{e}^{x}}-x-\frac{1}{x}$(α∈R)在(0,+∞)上有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若△ABC的内角A,B,C所对的边为a,b,c,已知sin(A-$\frac{π}{6}$)=cosA,且a=3,则b+c的最大值是(  )
A.6B.5C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a6的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x,y满足$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$则z=x+2y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a是实数,函数f(x)=2a|x|+2x-a,若函数y=f(x)有且仅有两个零点,则实数a的取值范围是a<-1或a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两条平行直线a、b,a∥平面α,则b与α的位置关系是b?α或b∥α.

查看答案和解析>>

同步练习册答案