分析 对a进行讨论,判断f(x)的单调性,根据零点个数得出f(x)的极大值大于零,即可解出a的范围.
解答 解:令f(x)=0得$\frac{ax}{{e}^{x}}=x+\frac{1}{x}$,
当a≤0时,显然$\frac{ax}{{e}^{x}}≤0$在(0,+∞)恒成立,而x+$\frac{1}{x}$≥2在(0,+∞)上恒成立,
故方程$\frac{ax}{{e}^{x}}=x+\frac{1}{x}$无解,即f(x)在(0,+∞)上无零点,不符合题意.
当a>0时,f′(x)=$\frac{a(1-x)}{{e}^{x}}$-1+$\frac{1}{{x}^{2}}$=$\frac{(1-x)(a{x}^{2}+(1+x){e}^{x})}{{e}^{x}•{x}^{2}}$,
∵ax2+(1+x)ex>0在(0,+∞)上恒成立,
∴当0<x<1时,f′(x)>0,当x>1时,f′(x)<0.
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
且$\underset{lim}{x→0+}$f(x)=-∞,$\underset{lim}{x→+∞}$f(x)=-∞,
∵f(x)有两个零点,∴f(1)>0,
即$\frac{a}{e}-2>0$,解得a>2e.
点评 本题考查了函数零点的个数与函数单调性的关系,函数单调性的判断,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | EH∥FG | B. | 四边形EFGH是平行四边形 | ||
| C. | Ω是棱柱 | D. | Ω是棱台 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com