| A. | EH∥FG | B. | 四边形EFGH是平行四边形 | ||
| C. | Ω是棱柱 | D. | Ω是棱台 |
分析 推导出EH∥FG∥B1C1,从而得到A、C正确,D不正确;推导出EH⊥EF,得到选项B正确.
解答 解:因为EH∥A1D1,A1D1∥B1C1,![]()
所以EH∥B1C1,又EH?平面BCC1B1,平面EFGH∩平面BCC1B1=FG,
所以EH∥平面BCB1C1,又EH?平面EFGH,
平面EFGH∩平面BCB1C1=FG,
所以EH∥FG,故EH∥FG∥B1C1,
所以选项A、C正确,D不正确;
因为A1D1⊥平面ABB1A1,
EH∥A1D1,所以EH⊥平面ABB1A1,
又EF?平面ABB1A1,故EH⊥EF,所以选项B正确,
故选:D.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com