分析 (1)由椭圆的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),列出方程组求出a,b,由此能求出椭圆E的方程.
(2)(i)设P(x1,y1)(y1≠0),M(2,y0),则${k}_{1}=\frac{{y}_{0}}{2}$,${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,由A、P、B三点共线及P(x1,y1)在椭圆上,能证明k1k2为定值.
(ii)求出直线m的方程为y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),由此能证明直线m过定点(-1,0).
解答 解:(1)∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
证明:(2)(i)设P(x1,y1)(y1≠0),M(2,y0),则${k}_{1}=\frac{{y}_{0}}{2}$,${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,
∵A、P、B三点共线,∴${y}_{0}=\frac{4{y}_{1}}{{x}_{1}+2}$,
∴k1k2=$\frac{{y}_{0}{y}_{1}}{2({x}_{1}-2)}$=$\frac{4{{y}_{1}}^{2}}{2({{x}_{1}}^{2}-4)}$,
∵P(x1,y1)在椭圆上,∴${{y}_{1}}^{2}=\frac{3}{4}(4-{{x}_{1}}^{2})$,
∴${k}_{1}{k}_{2}=\frac{4{{y}_{1}}^{2}}{2({{x}_{1}}^{2}-4)}$=-$\frac{3}{2}$为定值.
(ii)直线BP的斜率${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,直线m的斜率${k}_{m}=\frac{2-{x}_{1}}{{y}_{1}}$,
则直线m的方程为y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),
y=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+y0=$\frac{2-{x}_{1}}{{y}_{1}}$x-$\frac{2(2-{x}_{1})}{{y}_{1}}$+$\frac{4{y}_{1}}{{x}_{1}+2}$
=$\frac{2-{x}_{1}}{{y}_{1}}x+\frac{2({{x}_{1}}^{2}-4)+4{{y}_{1}}^{2}}{({x}_{1}+2){y}_{1}}$=$\frac{2-{x}_{1}}{{y}_{1}}x+\frac{2({{x}_{1}}^{2}-4)+12-3{{x}_{1}}^{2}}{({x}_{1}+2){y}_{1}}$
=$\frac{2-{x}_{1}}{{y}_{1}}(x+1)$.
∴直线m过定点(-1,0).
点评 本题考查椭圆方程的求法,考查两直线的斜率之积为定值的证明,考查直线过定点的证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | α⊥β,m?α⇒m⊥β | B. | α⊥β,m?α,n?β⇒m⊥n | ||
| C. | m∥n,n⊥α⇒m⊥α | D. | m?α,n?α,m∥β,n∥β⇒α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 5 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | EH∥FG | B. | 四边形EFGH是平行四边形 | ||
| C. | Ω是棱柱 | D. | Ω是棱台 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com