精英家教网 > 高中数学 > 题目详情
2.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M;
(i)设直线OM的斜率为k1,直线BP的斜率为k2,求证k1k2为定值;
(ii)设过点M垂直于PB的直线为m,求证:直线m过定点,并求出定点的坐标.

分析 (1)由椭圆的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),列出方程组求出a,b,由此能求出椭圆E的方程.
(2)(i)设P(x1,y1)(y1≠0),M(2,y0),则${k}_{1}=\frac{{y}_{0}}{2}$,${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,由A、P、B三点共线及P(x1,y1)在椭圆上,能证明k1k2为定值.
(ii)求出直线m的方程为y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),由此能证明直线m过定点(-1,0).

解答 解:(1)∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
证明:(2)(i)设P(x1,y1)(y1≠0),M(2,y0),则${k}_{1}=\frac{{y}_{0}}{2}$,${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,
∵A、P、B三点共线,∴${y}_{0}=\frac{4{y}_{1}}{{x}_{1}+2}$,
∴k1k2=$\frac{{y}_{0}{y}_{1}}{2({x}_{1}-2)}$=$\frac{4{{y}_{1}}^{2}}{2({{x}_{1}}^{2}-4)}$,
∵P(x1,y1)在椭圆上,∴${{y}_{1}}^{2}=\frac{3}{4}(4-{{x}_{1}}^{2})$,
∴${k}_{1}{k}_{2}=\frac{4{{y}_{1}}^{2}}{2({{x}_{1}}^{2}-4)}$=-$\frac{3}{2}$为定值.
(ii)直线BP的斜率${k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}$,直线m的斜率${k}_{m}=\frac{2-{x}_{1}}{{y}_{1}}$,
则直线m的方程为y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),
y=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+y0=$\frac{2-{x}_{1}}{{y}_{1}}$x-$\frac{2(2-{x}_{1})}{{y}_{1}}$+$\frac{4{y}_{1}}{{x}_{1}+2}$
=$\frac{2-{x}_{1}}{{y}_{1}}x+\frac{2({{x}_{1}}^{2}-4)+4{{y}_{1}}^{2}}{({x}_{1}+2){y}_{1}}$=$\frac{2-{x}_{1}}{{y}_{1}}x+\frac{2({{x}_{1}}^{2}-4)+12-3{{x}_{1}}^{2}}{({x}_{1}+2){y}_{1}}$
=$\frac{2-{x}_{1}}{{y}_{1}}(x+1)$.
∴直线m过定点(-1,0).

点评 本题考查椭圆方程的求法,考查两直线的斜率之积为定值的证明,考查直线过定点的证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是(  )
A.α⊥β,m?α⇒m⊥βB.α⊥β,m?α,n?β⇒m⊥n
C.m∥n,n⊥α⇒m⊥αD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的极坐标方程是ρ=4sinθ,设直线l的参数方程是$\left\{\begin{array}{l}{x=t-1}\\{y=2t+1}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程转化为直角坐标方程;
(Ⅱ)设直线l与曲线C的交点是M,N,O为坐标原点,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2.过椭圆右焦点且垂直于x轴的直线与椭圆交于A,B两点(点A在点B上方),且|AB|=1,点P是椭圆C上位于x轴上方的动点,且|F1P|+|F2P|=4.
(I)求椭圆C的方程;
(2)若直线PF1,PF2与直线y=3分别交于G,H两点,求线段GH长度的最小值;在线段GH长度取得最小值的情况下,若点T是椭圆C上一点,求△TPF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=logax(a>0且a≠1)和函数g(x)=sin$\frac{π}{2}$x,若f(x)与g(x)的图象有且只有3个交点,则a的取值范围是($\frac{1}{7}$,$\frac{1}{3}$)∪(5,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线事$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线与直线y=2x+5平行,则双曲线的离心率等于(  )
A.2B.5C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,记长方体ABCD-A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的几何体为Ω,则下列结论中不正确的是(  )
A.EH∥FGB.四边形EFGH是平行四边形
C.Ω是棱柱D.Ω是棱台

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值为$\frac{π}{3}$.
(1)求椭圆的方程;
(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P,Q两点,以PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为$\frac{4\sqrt{5}}{3}$和$\frac{2\sqrt{5}}{3}$,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.
(2)双曲线的焦距是实轴长的$\sqrt{5}$倍,且一个顶点的坐标为(0,2),求双曲线的方程.

查看答案和解析>>

同步练习册答案