精英家教网 > 高中数学 > 题目详情
11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值为$\frac{π}{3}$.
(1)求椭圆的方程;
(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P,Q两点,以PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.

分析 (1)设c=t,则a=2t,$b=\sqrt{3}t$,推导出点P为短轴端点,从而得到t=1,由此能求出椭圆的方程.
(2)设直线AB的方程为x=ty+1,联立$\left\{\begin{array}{l}x=ty+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$,得(3t2+4)y2+6ty-9=0,由此利用韦达定理、向量知识、直线方程、圆的性质、椭圆性质,结合已知条件能推导出以PQ为直径的圆恒过定点(1,0)和(7,0).

解答 (本小题满分12分)
解:(1)∵椭圆的离心率为$\frac{1}{2}$,不妨设c=t,a=2t,即$b=\sqrt{3}t$,其中t>0,
又△F1PF2内切圆面积取最大值$\frac{π}{3}$时,半径取最大值为$r=\frac{{\sqrt{3}}}{3}$,
∵${S_{△{F_1}P{F_2}}}=\frac{r}{2}•{C_{△{F_1}P{F_2}}}$,${C_{△{F_1}P{F_2}}}$为定值,
∴${S_{△{F_1}P{F_2}}}$也取得最大值,即点P为短轴端点,
∴$\frac{1}{2}•2c•b=\frac{r}{2}•(2a+2c)$,$\frac{1}{2}•2t•\sqrt{3}t=\frac{1}{2}•\frac{{\sqrt{3}}}{3}•(4t+2t)$,解得t=1,
∴椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.(4分)
(2)设直线AB的方程为x=ty+1,A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}x=ty+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$,得(3t2+4)y2+6ty-9=0,
则${y_1}+{y_2}=\frac{-6t}{{3+4{t^2}}}$,${y_1}{y_2}=\frac{-9}{{3+4{t^2}}}$,
直线AA1的方程为$y=\frac{y_1}{{{x_1}-(-2)}}(x-(-2))$,
直线BA1的方程为$y=\frac{y_2}{{{x_2}-(-2)}}(x-(-2))$,
则$P(4,\frac{{6{y_1}}}{{{x_1}+2}})$,$Q(4,\frac{{6{y_2}}}{{{x_2}+2}})$,
假设PQ为直径的圆是否恒过定点M(m,n),
则$\overrightarrow{MP}=(4-m,\frac{{6{y_1}}}{{{x_1}+2}}-n)$,$\overrightarrow{MQ}=(4-m,\frac{{6{y_2}}}{{{x_2}+2}}-n)$,
$\overrightarrow{MP}•\overrightarrow{MQ}={(4-m)^2}+(\frac{{6{y_1}}}{{{x_1}+2}}-n)(\frac{{6{y_2}}}{{{x_2}+2}}-n)=0$,
即$\overrightarrow{MP}•\overrightarrow{MQ}={(4-m)^2}+(\frac{{6{y_1}}}{{t{y_1}+3}}-n)(\frac{{6{y_2}}}{{t{y_2}+3}}-n)=0$,
即$\frac{{(36-12nt){y_1}{y_2}-18n({y_1}+{y_2})}}{{{t^2}{y_1}{y_2}+3t({y_1}+{y_2})+9}}+{n^2}+{(4-m)^2}=0$,

$\frac{(36-12nt)(-9)-18n(-6t)}{{-9{t^2}+3t(-6t)+9(3{t^2}+4)}}+{n^2}+{(4-m)^2}=0$,即6nt-9+n2+(4-m)2=0,
若PQ为直径的圆是否恒过定点M(m,n),即不论t为何值时,$\overrightarrow{MP}•\overrightarrow{MQ}=0$恒成立,
∴n=0,m=1或m=7.
∴以PQ为直径的圆恒过定点(1,0)和(7,0).(12分)

点评 本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆方程的求法,直线与圆锥曲线的相关知识,以及恒过定点问题.本小题对考生的化归与转化思想、运算求解能力都有很高要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知点C、D、E是线段AB的四等分点,O为直线AB外的任意一点,若$\overrightarrow{OC}$+$\overrightarrow{OD}$+$\overrightarrow{OE}$=m($\overrightarrow{OA}$+$\overrightarrow{OB}$),则实数 m的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(1,$\frac{3}{2}$),
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M;
(i)设直线OM的斜率为k1,直线BP的斜率为k2,求证k1k2为定值;
(ii)设过点M垂直于PB的直线为m,求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x|x-a|+b,x∈R.
(1)当a=1,b=1时,若$f(x)=\frac{5}{4}$,求x的值;
(2)若b<0,且对任何x∈(0,1]不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x的不等式acos2x+cosx≥-1恒成立,则实数a的取值范围是[$\frac{2-\sqrt{2}}{4}$,$\frac{2+\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在如图所示的矩形ABCD中,AB=2,AD=1,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=($\frac{1}{2}$)|x|-sin|x|在区间[-π,π]上的零点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知四棱锥S-ABCD是底面边长为$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求该四棱锥体积的取值范围; 
(2)当点S在底面ABCD上的射影为三角形ABD的重心G时,求直线SA与平面SCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若△ABC的内角A,B,C所对的边为a,b,c,已知sin(A-$\frac{π}{6}$)=cosA,且a=3,则b+c的最大值是(  )
A.6B.5C.4D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案