精英家教网 > 高中数学 > 题目详情
16.在如图所示的矩形ABCD中,AB=2,AD=1,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为$\frac{15}{4}$.

分析 建立坐标系,求出点的坐标,利用向量数量积的坐标公式进行求解即可.

解答 解:以B为坐标原点,BC所在直线为x轴建立直角坐标系,则A(0,2),D(1,2),E(x,0),
可得$\overrightarrow{AE}\;•\;\overrightarrow{DE}=(x,\;\;-2)\;•\;(x-1,\;\;-2)={x^2}-x+4$=${({x-\frac{1}{2}})^2}+\frac{15}{4}$,
因为E为线段BC上的点,
所以x∈[0,1],则$\overrightarrow{AE}\;•\;\overrightarrow{DE}$的最小值为$\frac{15}{4}$.
故答案为:$\frac{15}{4}$.

点评 本题主要考查向量数量积的计算,建立坐标系利用坐标法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.命题p:若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角;
命题q:若函数f(x)在(-∞,0]及(0,+∞)上都是减函数,则f(x)在(-∞,+∞)上是减函数.下列说法:①“p∨q”是真命题;②“p∨q”是假命题;③非p为假命题;④非q为假命题.
其中正确的是②(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线事$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线与直线y=2x+5平行,则双曲线的离心率等于(  )
A.2B.5C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若定义在区间D上的函数y=f(x)满足:对?x∈D,?M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是:①④⑤.
①y=sinx;②$y=x+\frac{1}{x}$;③y=tanx;④$y=\frac{{{e^x}-{e^{-x}}}}{{{e^x}+{e^{-x}}}}$;
⑤y=x3+ax2+bx+1(-4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值为$\frac{π}{3}$.
(1)求椭圆的方程;
(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P,Q两点,以PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.边长为a的正方体ABCD-A1B1C1D1中,P在棱DD1上运动,Q在底面ABCD上运动,但PQ为定长b(a<b<$\sqrt{3}$a),R为PQ的中点,则动点R的轨迹在正方体内的面积是(  )
A.$\frac{π{b}^{2}}{2}$B.$\frac{π{b}^{2}}{4}$C.$\frac{π{b}^{2}}{8}$D.$\frac{π{b}^{2}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|2x≤1},B={x|lnx<1},则A∪B等于(  )
A.{x|x<e}B.{x|0≤x≤e}C.{x|x≤e}D.{x|x>e}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ax2+2ax+1在[-3,2]上有最大值4.那么实数a等于(  )
A.-3B.$\frac{3}{8}$C.$-3或\frac{3}{8}$D.$3或-\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,且$B=C,2b=\sqrt{3}a$,则cosA=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案