精英家教网 > 高中数学 > 题目详情
(1)化简4(
a
-3
b
+5
c
)-2(-3
a
-6
b
+8
c
)=
10
a
+4
c
10
a
+4
c
(2)计算:已知向量
e1
e2
不共线,实数x,y满足(3x-4y)
e1
+(2x-3y)
e2
=6
e1
+3
e2
,则x-y的值
=
3
3
分析:本题(1)为向量的加减运算,按向量的运算法则即可得结果,(2)根据向量相等的定义,只需让方程两边
e1
e2
的系数分别对应相等.
解答:解;(1)4(
a
-3
b
+5
c
)-2(-3
a
-6
b
+8
c

=4
a
-12
b
+20
c
+6
a
+12
b
-16
c

=10
a
+4
c

(2)由题意可得
3x-4y=6
2x-3y=3

方程组中的两式相减即可的x-y=3,
故答案应填3
点评:本题为平面向量的加减混合运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二项式定理计算(3.02)4,使误差小于千分之一.
(4)试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和.
(5)已知球的半径等于r,试求内接正方形的体积.
(6)已知a是三角形的一边,β及γ是这边的两邻角,试求另一边b的计算公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(a)=
sin2(π-a)•cos(2π-a)•tan(-π+a)
sin(-π+a)tan(3π-a)

(1)化简f(a);
(2)若a=
5
4
π,求f(a)的值;
(3)若f(a)=
1
8
,且
π
4
<a<
π
2
,求cosa-sina的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简(a 
2
3
b 
1
2
)(-3a 
1
2
b 
1
3
)÷(
1
3
a 
1
6
b 
5
6

(2)计算(2
7
9
0.5+0.1-2+(2
10
27
 -
2
3
-3π0+9-0.5+490.5×2-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x

(1)化简f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
π
2
]
上恒成立,求实数m的取值范围;
(3)设A,B,C为△ABC的三个内角,若cosB=
1
3
f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:f(a)=
sin2(π-a)•cos(2π-a)•tan(-π+a)
sin(-π+a)tan(3π-a)

(1)化简f(a);
(2)若a=
5
4
π,求f(a)的值;
(3)若f(a)=
1
8
,且
π
4
<a<
π
2
,求cosa-sina的值.

查看答案和解析>>

同步练习册答案