精英家教网 > 高中数学 > 题目详情

【题目】设等差数列的前项和为,已知

1)求

2)若从中抽取一个公比为的等比数列,其中,且

i)求的通项公式;

ii)记数列的前项和为,是否存在正整数,使得成等差数列?若存在,求出满足的条件;若不存在,请说明理由.

【答案】(1)(2)(ⅰ)(ⅱ)存在正整数,且,使得成等差数列。

【解析】

1)先根据条件列出关于公差与首项的方程组,解得结果代入等差数列通项公式即可.

2)(i)由题可知,又因为,则,则可求出,根据等比数列的通项公式即可得出的通项公式;

ii)根据等比数列的前项和公式得出,又判断是递增的,

假设存在正整数,使得成等差数列,由等差中项可得,代入可得当且仅当,使得成等差数列.

解:(1)等差数列的公差设为,前项和为,

,可得,可得,

2)(i)若从中抽取一个公比为的等比数列,

其中,且,

可得 , ,解得,

,即有

ii)数列的前项和,

,

可得递增,

假设存在正整数,使得成等差数列,

可得,即 ,

可得,由,可得,

,得 ,

故不存在,使得成等差数列;

显然符合题意,

综上可得存在正整数,且,使得成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,平面四边形ABCD中,BC=CD.CBD沿BD折成如图2所示的三棱锥,使二面角的大小为.

1)证明:

2)求直线BC'与平面C'AD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕头市有一块如图所示的海岸,为岸边,岸边形成角,现拟在此海岸用围网建一个养殖场,现有以下两个方案:

方案l:在岸边上分别取点,用长度为的围网依托岸边围成三角形为围网).

方案2:在的平分线上取一点,再从岸边上分别取点,使得,用长度为的围网依托岸边围成四边形为围网).

记三角形的面积为,四边形的面积为. 请分别计算的最大值,并比较哪个方案好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省从2021年开始将全面推行新高考制度,新高考“”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为,等级考试科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法分别转换到五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:

等级

比例

赋分区间

而等比例转换法是通过公式计算:

其中分别表示原始分区间的最低分和最高分,分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为时,等级分分别为

假设小南的化学考试成绩信息如下表:

考生科目

考试成绩

成绩等级

原始分区间

等级分区间

化学

75分

等级

设小南转换后的等级成绩为,根据公式得:

所以(四舍五入取整),小南最终化学成绩为77分.

已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:

成绩

95

93

91

90

88

87

85

人数

1

2

3

2

3

2

2

(1)从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;

(2)从化学成绩获得等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201910月,德国爆发出芳香烃门事件,即一家权威的检测机构在德国销售的奶粉中随机抽检了16款(德国4款,法国8款、荷兰4款),其中8款检测出芳香烃矿物油成分,此成分会严重危害婴幼儿的成长,有些奶粉已经远销至中国,地区闻讯后,立即组织相关检测员对这8款品牌的奶粉进行抽检,已知该地区一婴幼儿用品商店在售某品牌的奶粉共6袋,这6袋奶粉中有4袋含有芳香矿物油成分,则随机抽取3袋恰有2袋含有芳香经矿物油成分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为35,第三行为7911,第四行为13151719,如图所示,在宝塔形数表中位于第行,第列的数记为,比如,若,则

A.64B.65C.71D.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足, 已知轴重合时, .

1)求椭圆的方程;

2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数满足是它的零点,则函数有趣的,例如就是有趣的,已知有趣的”.

1)求出bc并求出函数的单调区间;

2)若对于任意正数x,都有恒成立,求参数k的取值范围.

查看答案和解析>>

同步练习册答案