【题目】如图1,平面四边形ABCD中,
,
,
且BC=CD.将
CBD沿BD折成如图2所示的三棱锥
,使二面角
的大小为
.
![]()
(1)证明:
;
(2)求直线BC'与平面C'AD所成角的正弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1) 取
得中点
,连接
,根据已知条件可以证明
平面
,从而可证
;
(2) 取
得中点
,取
为
的中点,通过证明![]()
,
,
,然后以
为原点,建立如图所示的空间直角坐标系
.再用空间向量可以求得结果.
(1)证明:平面四边形
中,
,
,所以△
为正三角形,
在三棱锥
中,取
得中点
,连接
,则
,
因为
,所以
平面
,从而
.
(2)设
,则
,
由(1)知,
为二面角
的平面角,所以
,
在△
中,利用余弦定理可求得
,
所以△
为等腰三角形,取
得中点
,则![]()
,又
,
所以
平面
,取
为
的中点,则
,且
,
所以以
为原点,建立如图所示的空间直角坐标系
.
则
,
,
设平面
的法向量
,则
,即
,
可取
,
所以![]()
.
所以直线BC'与平面C'AD所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且
.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且
.判断直线AG是否在平面AEF内,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下
列联表:
(1)能否有
的把握认为是否爱好该项运动与性别有关?请说明理由.
(2)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派2人参加某项校际挑战赛,求选出的2人中恰有1名女大学生的概率.
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,F1(﹣2,0),F2(2,0)是椭圆C:
的两个焦点,M是椭圆C上的一点,当MF1⊥F1F2时,有|MF2|=3|MF1|.
![]()
(1)求椭圆C的标准方程;
(2)过点P(0,3)作直线l与轨迹C交于不同两点A,B,使△OAB的面积为
(其中O为坐标原点),问同样的直线l共有几条?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
![]()
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为
(元).求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列
的前
项和为
,已知
,
.
(1)求
;
(2)若从
中抽取一个公比为
的等比数列
,其中
,且
,
(i)求
的通项公式;
(ii)记数列的前
项和为
,是否存在正整数
,使得
成等差数列?若存在,求出
满足的条件;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com