精英家教网 > 高中数学 > 题目详情

【题目】如图1,平面四边形ABCD中,BC=CD.CBD沿BD折成如图2所示的三棱锥,使二面角的大小为.

1)证明:

2)求直线BC'与平面C'AD所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

(1) 得中点,连接,根据已知条件可以证明平面,从而可证;

(2) 得中点,的中点,通过证明,,,然后以为原点,建立如图所示的空间直角坐标系.再用空间向量可以求得结果.

(1)证明:平面四边形,,,所以△为正三角形,

在三棱锥,得中点,连接,,

因为,所以平面,从而.

(2),,

(1),为二面角的平面角,所以,

,利用余弦定理可求得,

所以为等腰三角形,得中点,,,

所以平面,的中点,,,

所以以为原点,建立如图所示的空间直角坐标系.

,

,

设平面的法向量,,,

可取,

所以.

所以直线BC'与平面C'AD所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 为整数,且为正整数,,记.

(1)试用分别表示

(2)用数学归纳法证明:对一切正整数均为整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2BC=3EPD的中点,点FPC上,且

(Ⅰ)求证:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下列联表:

1)能否有的把握认为是否爱好该项运动与性别有关?请说明理由.

2)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建运动达人社,现从运动达人社中选派2人参加某项校际挑战赛,求选出的2人中恰有1名女大学生的概率.

总计

爱好

40

20

60

不爱好

15

25

40

总计

55

45

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1(﹣20),F220)是椭圆C的两个焦点,M是椭圆C上的一点,当MF1F1F2时,有|MF2|3|MF1|

1)求椭圆C的标准方程;

2)过点P03)作直线l与轨迹C交于不同两点AB,使△OAB的面积为(其中O为坐标原点),问同样的直线l共有几条?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面是矩形,平面,以为直径的球面交于点,交于点.则点到平面的距离为_

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则=

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,已知

1)求

2)若从中抽取一个公比为的等比数列,其中,且

i)求的通项公式;

ii)记数列的前项和为,是否存在正整数,使得成等差数列?若存在,求出满足的条件;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案