精英家教网 > 高中数学 > 题目详情
6.已知圆的半径为10,则60°的圆心角所对的弧长为(  )
A.$\frac{20}{3}$πB.$\frac{10}{3}$πC.$\frac{20}{3}$D.$\frac{10}{3}$

分析 根据题意可以利用扇形弧长公式l扇形=$\frac{nπr}{180}$直接计算.

解答 解:根据题意得出:
l扇形=$\frac{nπr}{180}$=$\frac{60π×10}{180}$=$\frac{10}{3}$π.
故选:B.

点评 此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x3+2f′(1)x2+1,则f(-1)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17. 2017年5月14日“一带一路”国际合作高峰论坛在北京举行,会议期间,达成了多项国际合作协议,其中有一项是在某国投资建设一个深水港码头.如图,工程师为了解深水港码头海域海底的构造,在海平面内一条直线上取A,B,C三点进行测量,已知AB=60cm,BC=120cm,在A处测得水深AD=120cm,在B处测得水深BE=200m,在C处测得水深CF=150m,则cos∠DEF=$-\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线y=x2+alnx在点(1,1)处的切线方程为y=3x-2,则a=(  )
A.1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则下列不对的说法是(  )
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的三边长成等差数列,公差为2,且最大角的正弦值为$\frac{\sqrt{3}}{2}$,则这个三角形的周长是(  )
A.9B.12C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}满足:a1=1,an+1+(-1)nan=2n-1.
(1)求a2,a4,a6
(2)设bn=a2n,求数列{bn}的通项公式;
(3)设Sn为数列{an}的前n项和,求S2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三内角A、B、C的对边分别为a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若c=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an +1,an+12=bnbn+1
(Ⅰ)求 a 2,a3,a4 及b2,b3,b4
(Ⅱ)猜想{an },{bn} 的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N*,$\frac{{a}_{1}}{{b}_{1}}$•$\frac{{a}_{3}}{{b}_{3}}$•…•$\frac{{a}_{2n-1}}{{b}_{2n-1}}$<$\sqrt{\frac{{b}_{n}-{a}_{n}}{{b}_{n}+{a}_{n}}}$<$\sqrt{2}$sin$\frac{1}{{\sqrt{2\sqrt{b_n}-1}}}$.

查看答案和解析>>

同步练习册答案