精英家教网 > 高中数学 > 题目详情

【题目】一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球

1从袋中随机取两个球,求取出的两个球颜色不同的概率;

2从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率

【答案】12

【解析】

试题分析:1采用列举法先给袋中的球进行编号,两个红球可记为,三个白球可记为,根据条件从袋中随机取两个球,列出满足条件的所有基本事件要做到不重不漏及统计其个数,再根据要求取出的两个球颜色不同的概率统计出其个数,根据古典概型的计算公式计算出其概率;2由题意有放回地取出球,故可采用列表法横的表示第一次取出球的结果,竖的表示第二次取出球的结果,则易统计出其基本事件的总数,再统计出符号条件的事件个数,根据古典概型的计算公式计算出其概率

试题解析:12个红球记为3个白球记为

从袋中随机取两个球,其中一切可能的结果组成的基本事件有:共10个

设事件 取出的两个球颜色不同中的基本事件有:

共6个

2从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,其一切可能的结果组成的基本事件有:共25个

设事件 两次取出的球中至少有一个红球

中的基本事件有:

共16个

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面内.

)求的大小;

)求点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查调查结果如下表:

阅读名著的本数

1

2

3

4

5

男生人数

3

1

2

1

3

女生人数

1

3

3

1

2

1试根据上述数据,求这个班级女生阅读名著的平均本数;

2若从阅读本名著的学生中任选人交流读书心得,求选到男生和女生各人的概率;

3试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数,如果存在点,对函数的图象上任意点关于点的对称点也在函数的图象上,则称函数关于点对称,称为函数的一个对称点,对于定义在上的函数,可以证明点图象的一个对称点的充要条件是

1求函数图象的一个对称点;

2函数的图象是否有对称点?若存在则求之,否则说明理由;

3函数的图象是否有对称点?若存在则求之,否则说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)对任意,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,

22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )

A. 这种抽样方法是分层抽样

B. 这种抽样方法是系统抽样

C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差

D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

时,求的极值;

若曲线在点处切线的斜率为3,且对任意都成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为.半小时后,货轮到达C点处,观测到灯塔A的方位角为.求此时货轮与灯塔之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(10分)如图所示,在三棱锥中,底面,动点D在线段AB

(1)求证:平面平面

(2)时,求三棱锥的体积

查看答案和解析>>

同步练习册答案