精英家教网 > 高中数学 > 题目详情
8.根据下列条件确定实数x的取值范围:$\sqrt{a}$<($\frac{1}{a}$)1-2x(a>0,且a≠1)

分析 根据指数函数的单调性,分类a>1和0<a<1两种情况讨论即可.

解答 解:∵$\sqrt{a}$<($\frac{1}{a}$)1-2x
∴($\frac{1}{a}$)${\;}^{-\frac{1}{2}}$<($\frac{1}{a}$)1-2x
当a>1时,-$\frac{1}{2}$>1-2x,解得x>$\frac{3}{4}$,
当0<a<1时,-$\frac{1}{2}$<1-2x,解得x<$\frac{3}{4}$.

点评 本题考查了指数函数的单调性,以及分类讨论的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.${(\frac{{\sqrt{x}}}{3}+\frac{3}{{\sqrt{x}}})^8}$展开式的常数项为70.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合M+{x|-1<x<3},N={x|-2<x<1},则M∩N={x|-1<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知lg2=a,1g7=b,则log1498=(  )
A.$\frac{a-b}{a+b}$B.$\frac{2a+b}{a+b}$C.$\frac{a-2b}{a+b}$D.$\frac{a+2b}{a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x|(x-4).
(1)用分段函数表示函数f(x),并作出y=f(x)的图象;
(2)利用图象试确定k的取值范围,使方程f(x)-k=0有一个解;有两个解;有三个解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在复平面内,复数z=$\frac{1}{1-i}$+i2对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|=2,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,点O为坐标原点,点A(1,1),若函数y=ax(a>0,且a≠1)及logbx(b>0,且b≠1)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足(  )
A.a<b<1B.b<a<1C.b>a>1D.a>b>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值:1-($\frac{1}{3}$)${\;}^{-\frac{1}{2}}$-$\frac{1}{2-\sqrt{3}}$-(3$\frac{3}{8}$)${\;}^{\frac{1}{3}}$+($\sqrt{7}$-$\sqrt{103}$)0+(-$\frac{2}{3}$)-1

查看答案和解析>>

同步练习册答案