精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|x|(x-4).
(1)用分段函数表示函数f(x),并作出y=f(x)的图象;
(2)利用图象试确定k的取值范围,使方程f(x)-k=0有一个解;有两个解;有三个解.

分析 (1)要根据绝对值的定义,利用零点分段法,分当x<0时和当x≥0时两种情况,化简函数的解析式,最后可将函数y=|x|(x-4)写出分段函数的形式,根据分段函数图象分段画的原则,结合二次函数的图象和性质,可作出图象;
(2)根据(1)中函数的图象,结合函数的极大值为0,极小值为-4,可得方程|x|•(x-4)=k有一解,有两解和有三解时k的取值范围.

解答 解:(1)当x<0时,y=|x|(x-4)=-x(x-4),
当x≥0时,y=|x|(x-4)=x(x-4),
综上所述:y=$\left\{\begin{array}{l}{-x(x-4),x<0}\\{x(x-4),x≥0}\end{array}\right.$.
根据分段函数图象的作法,其函数图象如图所示;
(2)由(1)中函数的图象可得:
当k<-4或k>0时,方程|x|•(x-4)=k有一解,
当k=-4或k=0时,方程|x|•(x-4)=k有两解,
当-4<k<0时,方程|x|•(x-4)=k有三解.

点评 本题考查的知识点是分段函数的解析式及其图象的作法,函数的零点,难度不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)周期是6,当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.337B.338C.1678D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.log49•log36•log616=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知125x=1000,12.5y=1000,则$\frac{1}{x}$$-\frac{1}{y}$的值为(  )
A.1B.2C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,若f(a)-f(1)=0,则实数a的值等于(  )
A.-1或0B.-1或1C.1或0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下列条件确定实数x的取值范围:$\sqrt{a}$<($\frac{1}{a}$)1-2x(a>0,且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:$\frac{2\sqrt{b}}{\root{3}{{a}^{2}}}$•$\frac{(-6\root{3}{b})}{\root{3}{a\sqrt{a}}}$÷$\frac{(-3\root{6}{{b}^{5}})}{\root{6}{a}}$=$\frac{4}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知幂函数f(x)=${x}^{{m}^{2}-2m-3}$(m∈N*)的图象关于(0,0)中心对称,且在(0,+∞)上函数值随x的增大而减少,则:
(1)写出函数f(x)的解析式;
(2)在(1)的条件下求满足${(a+1)}^{-\frac{m}{3}}$<${(3-2a)}^{-\frac{m}{3}}$的a的取值范围;
(3)设g(x)=$\frac{1}{x•f(x)}$+$\frac{8b}{{x}^{2}•f(x)}$,其中4≤x≤16,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{1-x}{2x+5}$(x∈[2,3])的值域为[$-\frac{2}{11}$,$-\frac{1}{9}$].

查看答案和解析>>

同步练习册答案