精英家教网 > 高中数学 > 题目详情
6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两个端点构成一个面积为1的直角三角形.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设过点M(0,t)(t>0)的直线l与椭圆E相交于A、B两点,点M关于原点的对称点为N,若点N总在以线段AB为直径的圆内,求t的取值范围.

分析 (1)由题意列出方程组求出a,b,由此能求出椭圆E的方程;
(2)当直线l的斜率不存在时,l的方程为x=0,|AB|=2,点M在椭圆内,由$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(2k2+1)x2+4ktx+2t2-2=0,由此利用根的判别式、韦达定理、弦长公式、由此能求出t的取值范围.

解答 解:(1)由题意,$\left\{\begin{array}{l}{b=c}\\{bc=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{2}$,b=c=1.
∴椭圆E的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)当直线l的斜率不存在时,由题意知l的方程为x=0,
此时,A,B为椭圆的上下顶点,且|AB|=2,
∵点N总在以线段AB为直径的圆内,且t>0,
∴0<t<1,∴点M在椭圆内,
由方程组$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(2k2+1)x2+4ktx+2t2-2=0,
∵直线l与椭圆E有两个公共点,
∴△=(4kt)2-4(2k2+1)(2t2-2)>0,
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=\frac{-4kt}{2{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{2{t}^{2}-2}{2{k}^{2}+1}$,
设AB的中点G(x0,y0),
则${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-2kt}{2{k}^{2}+1}$,${y}_{0}=k{x}_{0}+t=\frac{t}{2{k}^{2}+1}$,
∴G($\frac{-2kt}{2{k}^{2}+1}$,$\frac{t}{2{k}^{2}+1}$),
∴|NG|=$\sqrt{(\frac{-2kt}{2{k}^{2}+1})^{2}+(\frac{t}{2{k}^{2}+1}+t)^{2}}$=$\frac{t\sqrt{4{k}^{4}+12{k}^{2}+4}}{2{k}^{2}+1}$,
|AB|=$\sqrt{1+{k}^{2}}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=2$\sqrt{2}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{2{k}^{2}+1-{t}^{2}}}{2{k}^{2}+1}$,
∵点N总位于以线段AB为直径的圆内,
∴|NG|<$\frac{|AB|}{2}$对于k∈R恒成立,
∴$\frac{t\sqrt{4{k}^{4}+12{k}^{2}+4}}{2{k}^{2}+1}$<$\sqrt{2}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{2{k}^{2}+1-{t}^{2}}}{2{k}^{2}+1}$,
化简,得2t2k4+7t2k2+3t2<2k4+3k2+1,
整理,得t2<$\frac{{k}^{2}+1}{{k}^{2}+3}$,
而g(k)=$\frac{{k}^{2}+1}{{k}^{2}+3}$=1-$\frac{2}{{k}^{2}+3}$≥1-$\frac{2}{3}$=$\frac{1}{3}$,
当且仅当k=0时,等号成立,
∴t2<$\frac{1}{3}$,由t>0,.解得0<t<$\frac{\sqrt{3}}{3}$,
∴t的取值范围是(0,$\frac{\sqrt{3}}{3}$).

点评 本题考查椭圆方程的求法,考查满足条件的实数值的求法,关键是注意椭圆性质的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,则f(log23)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函数y=f(x)-$\frac{t}{3}$x(t>0)至少有9个零点,则t的取值范围为(  )
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$z=\frac{4-2i}{1+i}$(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)和虚轴端点E的直线交双曲线右支于点P,若E为线段EP的中点,则该双曲线的离心率为(  )
A.$\sqrt{5}+1$B.$\sqrt{5}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数(a2+i)(1+ai)(a∈R)是实数,则实数a的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,ABCD为长方形,AB=3,AD=$\sqrt{2}$,E,F分别是边AB,CD上的点,且AE=CF=1,DE与AF相交于点G,将三角形ADF沿AF折起至ADF',使得D'E=1,如图2.
(1)求证:平面D'EG⊥ABCF平面;
(2)求平面D'EG与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,则双曲线的离心率为(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题:“存在一个椭圆,其离心率e<1”的否定是(  )
A.任意椭圆的离心率e≥1B.存在一个椭圆,其离心率e≥1
C.任意椭圆的离心率e>1D.存在一个椭圆,其离心率e>1

查看答案和解析>>

同步练习册答案