精英家教网 > 高中数学 > 题目详情
已知角α终边上一点P(3,4),求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.
考点:运用诱导公式化简求值,任意角的三角函数的定义
专题:三角函数的求值
分析:由条件利用任意角的三角函数的定义求出sinα和cosα的值,再利用诱导公式把要求的式子化为tanα=
sinα
cosα
,从而求得结果.
解答: 解:∵角α终边上一点P(3,4),∴r=|OP|=5,∴sinα=
y
r
=
4
5
,cosα=
x
r
=
3
5

cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
=
-sinα[-sin(π+α)]
cos(
2
-α)sin(
π
2
+α)
=
-sinα•sinα
-sinα•cosα
=tanα=
sinα
cosα
=
4
5
3
5
=
4
3
点评:本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一组数据:1、6、2、2、4、6的中位数为(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序语句过程中,循环体执行的次数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.曲线C1,曲线C2的极坐标方程分别为ρ=4sinθ,ρsin(θ+
π
4
)=2
2

(1)求曲线C1与C2的直角坐标方程,并分别指出是什么曲线?
(2)求曲线C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,sin
x
2
),且x∈[0,
π
2
].
(1)求
a
b
及|
a
+
b
|;
(2)若f(x)=
a
b
-2λ|
a
+
b
|的最小值为-
3
2
,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD是矩形,AB=1,BC=
3
,将△ABC沿着对角线AC折起来得到△AB1C且顶点B1在平面ACD上射影O恰落在边AD上,如图所示.
(1)求证:平面AB1C⊥平面B1CD;             
(2)求三棱锥B1-ABC的体积VB1-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下:
29 32 30 31 30 28
31 29 33 32 27 28
分别求出甲、乙两人最大速度数据的平均数、方差,试判断选谁参加该项重大比赛更合适.(备注:参考公式:平均数
.
x
=
1
n
(x1+x2+…+xn);方差s2=
1
n
[(x1-x)2+(x2-x)2+…+(xn-x)2].)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-
1
3
ax3(a>0)
,函数g(x)=f(x)+ex(x-1),其导数为g′(x),若a=e,
(1)求g(x)的单调区间;
(2)求证:x>0时,不等式g′(x)≥1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,其前n项和为Sn,且an=2
Sn
-1,n∈N*,数列b1,b2-b1,b3-b2,…,bn-bn-1(n≥2)是首项和公比均为
1
2
的等比数列.
(1)求证数列{Sn}是等差数列;
(2)若cn=anbn,求数列{an}的前n项和Tn

查看答案和解析>>

同步练习册答案