精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正数,其前n项和为Sn,且an=2
Sn
-1,n∈N*,数列b1,b2-b1,b3-b2,…,bn-bn-1(n≥2)是首项和公比均为
1
2
的等比数列.
(1)求证数列{Sn}是等差数列;
(2)若cn=anbn,求数列{an}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出a1=1,Sn≥1,由Sn-Sn-1=2
Sn
-1(n≥2)
,得到
Sn
=
Sn-1
+1
,由此能证明数列{
Sn
}
是等差数列.
(2)Sn=n2,an=2n-1,cn=(2n-1)(1-
1
2n
)=(2n-1)-
2n-1
2n
,由此利用错位相减法和分组法语和法能求出数列{an}的前n项和Tn
解答: 解:(1)∵an=2
Sn
-1,n∈N*
∴由a1=S1=2
S1
-1
,得a1=S1=1,又{an}的各项均为正数,∴Sn≥1,n∈N*
an=2
Sn
-1
,∴Sn-Sn-1=2
Sn
-1(n≥2)

(
Sn
-1)2=
Sn-1
Sn
=
Sn-1
+1

∴数列{
Sn
}
是等差数列;
(2)∵
Sn
=
S1
+(n-1)=n
,∴Sn=n2,an=2n-1;
bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1-
1
2n

cn=(2n-1)(1-
1
2n
)=(2n-1)-
2n-1
2n

先求数列{
2n-1
2n
}
的前n项和An
An=
1
2
+
3
22
+
5
23
+
7
24
+…+
2n-1
2n

1
2
An=
1
22
+
3
23
+
5
24
+…+
2n-3
2n
+
2n-1
2n+1

1
2
An=
1
2
+
2
22
+
2
23
+
2
24
+…+
2
2n-1
+
2
2n
-
2n-1
2n+1

1
2
An=
3
2
-
2n+3
2n+1
,∴An=3-
2n+3
2n

Tn=n2+3-
2n+3
2n
点评:本题考查等差数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α终边上一点P(3,4),求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+2n,
(1)求数列{an}的通项公式;
(2)令bn=
1
Sn
,且数列{bn}的前n项和为Tn,求Tn
(3)若数列{cn}满足条件:cn+1=acn+2n,又c1=3,是否存在实数λ,使得数列{
cn
2n
}为等差数列?

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)为f(x)的导函数),则称这类函数为A类函数.
(1)若函数g(x)=x2-1,试判断g(x)是否为A类函数;
(2)若函数h(x)=ax-3-lnx-
1-a
x
是A类函数,求实数a的取值范围;
(3)若函数f(x)是A类函数,当x1>0,x2>0时,证明f(x1)+f(x2)<f(x1)+f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sinx
2+cosx

(1)求f(x)的单调区间;
(2)若f(x)≤a在[0,2π]有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=2,an=an-1+2n(n≥2)
(1)求这个数列的通项公式an
(2)若{
1
an
}的前n项和为Sn,求出Sn并证明
1
2
≤Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
,an+1=
1
2
an+1(n∈N+),令bn=an-2
(1)求证:{bn}是等比数列,并求bn
(2)求通项an,并求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项的和为Sn=n(n+1)
(1)求证:数列{an}为等差数列;
(2)求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有三个正数依次成等差数列其中他们的和为12,且三个数的平方和为56,求这三个数.

查看答案和解析>>

同步练习册答案