精英家教网 > 高中数学 > 题目详情
直三棱柱 ABC-A1B1C1 中,若
CA
=
a
CB
=
b
CC1
=
c
,则
A1B
=
-
a
-
c
+
b
-
a
-
c
+
b
分析:由向量加法的三角形法则,得到
A1B
=
A1C
+
CB
,再由向量加法的三角形法则,
A1C
=
A1C1
+
C1C
,最后利用相反向量即得到结论.
解答:解:向量加法的三角形法则,得到
A1B
=
A1C
+
CB
=
A1C1
+
C1C
+
CB
=-
CA
-
CC1
+
CB
=-
a
-
c
+
b

故答案为:-
a
-
c
+
b
点评:本题考查的知识点是向量的三角形法则,要将未知向量用已知向量表示,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A′B′C′的侧棱AA′=4,底面三角形ABC中,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

同步练习册答案