精英家教网 > 高中数学 > 题目详情
15.过点(1,0)且与直线x+3y-1=0垂直的直线方程的一般式是3x-y-3=0.

分析 设与直线x+3y-1=0垂直的直线方程的一般式是3x-y+m=0,把点(1,0)代入即可得出.

解答 解:设与直线x+3y-1=0垂直的直线方程的一般式是3x-y+m=0,
把点(1,0)代入可得:3+m=0,解得m=-3.
因此所求的方程为:3x-y-3=0.
故答案为:3x-y-3=0.

点评 本题考查了相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=kax-a-x(a>0且a≠1)是奇函数,f(1)=$\frac{3}{2}$.
(Ⅰ)求函数f(x)在[1,+∞)上的值域;
(Ⅱ)若函数g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商店预备在一个月内分批购买每张价值为200元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费40元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共520元,现在全月只有480元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点为F(-2,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1外,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N*
(I)证明数列{an} 是等差数列,并求其通项公式;
(II)设Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数y=$\sqrt{2}$cos(3x-$\frac{π}{4}$)的图象,可以将函数y=$\sqrt{2}$cos3x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,则f(f($\frac{1}{e}$))=(  )
A.$\frac{1}{e}$B.eC.-$\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点M(x0,y0)在圆O:x2+y2=4上运动(O为圆心),N(4,0),点P(x,y)为线段MN的中点.
(1)求点P(x,y)的轨迹方程;
(2)求点P(x,y)到直线3x+4y-86=0的距离的最大值和最小值.
(3)设直线l:y=x+b与圆O相交于A,B两点,问当b取何值时,三角形AOB的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,则z=4x-y的最小值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案