分析 (1)由an+2=2an+1-an( n∈N*),变形为an+2-an+1=an+1-an,可知{an}为等差数列,由已知利用通项公式即可得出.
(2)令an=10-2n≥0,解得n≤5.令Tn=a1+a2+…+an=9n-n2.可得当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn,n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn即可得出.
解答 解:(1)∵an+2=2an+1-an( n∈N*)
∴an+2-an+1=an+1-an,
∴{an}为等差数列,设公差为d,
由a1=8,a4=2可得2=8+3d,解得d=-2,
∴an=8-2(n-1)=10-2n.
(2)令an=10-2n≥0,解得n≤5.
令Tn=a1+a2+…+an=$\frac{n(8+10-2n)}{2}$=9n-n2.
∴当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn=9n-n2,
n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn=n2-9n+40.
故Sn=$\left\{\begin{array}{l}{9n-{n}^{2},n≤5}\\{{n}^{2}-9n+40,n≥6}\end{array}\right.$.
点评 本题考查了等差数列的通项公式及其前n项和公式、含有绝对值的数列的前n项和的求法、分类讨论等基础知识与基本技能方法,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | D=0,E≠0,F≠0 | B. | E=F=0,D≠0 | C. | D=F=0,E≠0 | D. | D=E=0,F≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{7π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-1,+∞)上是增函数 | B. | 在(-1,+∞)上是减函数 | ||
| C. | 在(-∞,1)上是增函数 | D. | 在(-∞,1)上是减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com