分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=4x-y得y=4x-z,
平移直线y=4x-z,
由图象可知当直线y=4x-z经过点C时,此时z最小,
由$\left\{\begin{array}{l}{x-y-2=0}\\{x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
即C($\frac{1}{2}$,$\frac{3}{2}$),此时z=4×$\frac{1}{2}$-$\frac{3}{2}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ln2 | B. | 2ln2 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要的条件 | B. | 必要而不充分的条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要的条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-1,+∞)上是增函数 | B. | 在(-1,+∞)上是减函数 | ||
| C. | 在(-∞,1)上是增函数 | D. | 在(-∞,1)上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=lgx2,g(x)=2lgx | ||
| C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x-1}$,g(x)=$\sqrt{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(4)<f(2)<f(1) | D. | f(4)<f(1)<f(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com