精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A,B,C的对边分别为a,b,c且满足bcosA=(2c-a)cosB.
(1)求角B的大小;
(2)若b=4$,\;\;\overrightarrow{BA}•\overrightarrow{BC}$=4,求a+c的值.

分析 (1)由正弦定理把已知等式化边为角,利用两角和的正弦化简即可求得角B的大小;
(2)由数量积为4可得ac的值,再由余弦定理整体运算求得a+c的值.

解答 解:(1)∵bcosA=(2c-a)cosB,
由正弦定理得sinBcosA=2sinCcosB-sinAcosB,
即sin(A+B)=2sinCcosB=sinC,
∵sinC≠0,∴cosB=$\frac{1}{2}$.
又B∈(0,π),∴B=$\frac{π}{3}$;
(2)∵$\overrightarrow{BA}•\overrightarrow{BC}=4$,∴ca•cosB=4,得ac=8.
由余弦定理得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=(a+c)2-24=16.
∴$a+c=2\sqrt{10}$.

点评 本题考查平面向量的数量积运算,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.为了得到函数y=$\sqrt{2}$cos(3x-$\frac{π}{4}$)的图象,可以将函数y=$\sqrt{2}$cos3x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若不等式组$\left\{\begin{array}{l}x≤1\\ y≤3\\ 2x-y+λ-2≥0\end{array}\right.$表示的平面区域经过所有四个象限,则实数λ的取值范围是(  )
A.(-∞,4)B.[1,2]C.[2,4]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,集合A,B是全集U的两个子集,则图中阴影部分可表示为(  )
A.UA∪(A∩B)B.UA∩∁UBC.UA∪∁UBD.U(A∪B)∪(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,则z=4x-y的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知an=an-1-an-2(n≥3),a1=1,a2=2,a2016=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{m{x^2}+mx+2}$的定义域是R,则实数m的取值范围是[0,8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|x2-2x+a≥0},且1∉A,则实数a的取值范围是a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.点P(-2,1)关于直线y=x+1对称点是(0,-1).

查看答案和解析>>

同步练习册答案