精英家教网 > 高中数学 > 题目详情
13.已知f(x)是定义在R上的偶函数且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的(  )
A.充分而不必要的条件B.必要而不充分的条件
C.充要条件D.既不充分也不必要的条件

分析 由题意,可由函数的性质得出f(x)为[-1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[-1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项

解答 解:∵f(x)是定义在R上的偶函数,
∴若f(x)为[0,1]上的增函数,则f(x)为[-1,0]上是减函数,
又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期,
∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.
若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[-1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.
综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.
故选C.

点评 本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点为F(-2,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1外,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点M(x0,y0)在圆O:x2+y2=4上运动(O为圆心),N(4,0),点P(x,y)为线段MN的中点.
(1)求点P(x,y)的轨迹方程;
(2)求点P(x,y)到直线3x+4y-86=0的距离的最大值和最小值.
(3)设直线l:y=x+b与圆O相交于A,B两点,问当b取何值时,三角形AOB的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若不等式组$\left\{\begin{array}{l}x≤1\\ y≤3\\ 2x-y+λ-2≥0\end{array}\right.$表示的平面区域经过所有四个象限,则实数λ的取值范围是(  )
A.(-∞,4)B.[1,2]C.[2,4]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,汽车前反光镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反光镜的轴垂直,灯泡位于抛物线的焦点处,已知灯口的直径是24cm,灯深10cm.那么灯泡与反光镜的顶点(即截得抛物线的顶点)距离为(  )
A.10 cmB.7.2 cmC.2.4 cmD.3.6 cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,集合A,B是全集U的两个子集,则图中阴影部分可表示为(  )
A.UA∪(A∩B)B.UA∩∁UBC.UA∪∁UBD.U(A∪B)∪(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,则z=4x-y的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{m{x^2}+mx+2}$的定义域是R,则实数m的取值范围是[0,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+a|x-1|+1(a∈R),其中a≥0,求f(x)的最小值.

查看答案和解析>>

同步练习册答案