精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2+a|x-1|+1(a∈R),其中a≥0,求f(x)的最小值.

分析 去掉绝对值,写成分段函数的形式,结合图象分类求值域.

解答 解:f(x)=f(x)=x2+a|x-1|+1=$\left\{\begin{array}{l}{{x}^{2}+ax-a+1…x≥1}\\{{x}^{2}-ax+a+1…x<1}\end{array}\right.$
①当a=0时,f(x)=x2+1,f(x)min=1…(3分)
②当a>0时,结合图象
( i)当$\frac{a}{2}≥1$,即a≥2时,f(x)min=分(1)=2;…(6分)
( ii)当$\frac{a}{2}<1$,即0<a<2时,f(x)min=f($\frac{a}{2}$)=-$\frac{{a}^{2}}{4}+a+1$;…(9分)
综上:f(x)min=$\left\{\begin{array}{l}{-\frac{{a}^{2}}{4}+a+1…a<2}\\{2…a≥2}\end{array}\right.$.…(10分)

点评 本题考查了用分类讨论处理分段函数的值域问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f(x)是定义在R上的偶函数且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的(  )
A.充分而不必要的条件B.必要而不充分的条件
C.充要条件D.既不充分也不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系为(  )
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(4)<f(2)<f(1)D.f(4)<f(1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{3}$,过左焦点F1(-c,0)作圆x2+y2=a2的切线,切点为E,延长F1E交抛物线y2=4cx于P,Q两点,则|PE|+|QE|的值为(  )
A.$10\sqrt{2}a$B.10aC.$(5+\sqrt{5})a$D.$12\sqrt{2}a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若0≤x<π,则满足方程tan(4x-$\frac{π}{4}$)=1的角的集合是{$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B-CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知平面直角坐标系中的动点M与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(Ⅰ)求动点M的轨迹方程,并说明轨迹是什么图形;
(Ⅱ)记动点M的轨迹为C,过点P(-2,3)的直线l被C所截得的弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log4(4x+1)+kx,(k∈R)是偶函数.
(1)求k的值;
(2)若函数h(x)=4${\;}^{f(x)+\frac{x}{2}}$+m•2x-1,x∈[0,log23]最小值为0,求m的值;
(3)若函数y=f(x)的图象与直线y=$\frac{1}{2}$x+a没有交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆x2+y2-4x-4y-10=0的圆心坐标为(2,2).

查看答案和解析>>

同步练习册答案