精英家教网 > 高中数学 > 题目详情

【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:

做不到科学用眼

能做到科学用眼

合计

45

10

55

30

15

45

合计

75

25

100

(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

【答案】1)分布列见解析,;(2

【解析】

试题(1)分层从份女生问卷中抽取了份问卷,其中科学用眼人,不科学用眼人,若从这份问卷中随机抽取份,随机变量.利用超几何分布即可得出分布列及其数学期望;(2)根据独立性检验的基本思想的应用计算公式可得的观测值,即可得出.

试题解析:(1科学用眼人,不科学用眼人.

则随机变量

分布列为


0

1

2





2

由表可知270630303840

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆切于点,与圆交于点,圆在点处的切线交于点为坐标原点,则的面积的最大值为( )

A.B.2C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形都是边长为2的正方形,点分别是的中点,二面角的大小为60°.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市名农民工(其中技术工、非技术工各)的月工资,得到这名农民工的月工资均在(百元)内,且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(1)的值;

(2)已知这名农民工中月工资高于平均数的技术工有名,非技术工有.

①完成如下所示列联表

技术工

非技术工

总计

月工资不高于平均数

月工资高于平均数

总计

②则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为,a为常数)),过点、倾斜角为的直线的参数方程满足,(为参数).

(1)求曲线C的普通方程和直线的参数方程;

(2)若直线与曲线C相交于A、B两点(点P在A、B之间),且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

2)对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线的斜率为,直线的斜率为,且.

(1)求点的轨迹的方程;

(2),连接并延长,与轨迹交于另一点,点中点,是坐标原点的面积之和为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点,.

(1)求证:平面

(2)若异面直线所成角的余弦值为,求四棱锥的体积.

查看答案和解析>>

同步练习册答案