【题目】以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为
(
,a为常数)),过点
、倾斜角为
的直线
的参数方程满足
,(
为参数).
(1)求曲线C的普通方程和直线
的参数方程;
(2)若直线
与曲线C相交于A、B两点(点P在A、B之间),且
,求
和
的值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
底面ABC,
是边长为2的正三角形,
,E,F分别为BC,
的中点.
![]()
1
求证:平面
平面
;
2
求三棱锥
的体积;
3
在线段
上是否存在一点M,使直线MF与平面
没有公共点?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 xOy中,O为坐标原点,已知点
,P是动点,且三角形POQ的三边所在直线的斜率满足
.
(1)求点P的轨迹C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)过点
任作两条互相垂直的直线
,分别交轨迹 C 于点A,B和M,N,设线段AB,MN的中点分别为E,F.,求证:直线EF恒过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为![]()
(1)求以椭圆C的焦点为顶点,顶点为焦点的椭圆方程;
(2)过椭圆C的左焦点且倾斜角为
的直线与椭圆交于A,B两点,求
的面积;
(3)过定点
的直线交椭圆C于AB两点,求弦AB中点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
![]()
(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com