精英家教网 > 高中数学 > 题目详情
已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.

(I)求y1y2的值;
(Ⅱ)求讧:|PM|="|" PN|
(I)(Ⅱ)证明如下

试题分析:解:(1)令直线

证明:(2)直线,即

同理


点评:关于曲线的大题,当涉及到交点时,常用到根与系数的关系式:)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:










(1)求的标准方程;
(2)设斜率不为0的动直线有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点作斜率为1的直线l,交抛物线于A、B两点,则|AB|=        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点的抛物线的标准方程是                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线焦点为,过做倾斜角为的直线,与抛物线交于A,B两点,若,则= (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线及点,直线的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。

查看答案和解析>>

同步练习册答案