精英家教网 > 高中数学 > 题目详情
函数y=
x2
10
和y=|log3x|的交点个数有
 
个.
考点:对数函数的图像与性质
专题:作图题,函数的性质及应用
分析:由题意作函数y=
x2
10
和y=|log3x|的图象,从而得到答案.
解答: 解:作函数y=
x2
10
和y=|log3x|的图象如下,

由图可知,有3个交点,
故答案为:3.
点评:本题考查了函数的图象的交点的个数问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=lgx+x-2在下列哪个区间一定存在零点(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
bx-a
ax
(a>0,x>0)的图象过点(a,0).
(1)判断函数f(x)在(0.+∞)上的单调并用函数单调性定义加以证明;
(2)若a>
1
5
函数f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈[0,1]时,f(x)=2x-1
(1)求f(x)在[-1,0)上的解析式
(2)求f(log 
1
2
24)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于一切x,y∈R,都有f(x+y)=f(x)+f(y)且f(x)在R上为减函数,当x>0时,f(x)<0,f(1)=-2
(1)求f(0),f(2)的值.    
(2)判定函数的奇偶性.
(3)若f(x2-2x+3)<f(x2+x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且S10=12,则a5+a6=(  )
A、
12
5
B、12
C、6
D、
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

4
2
1
x
dx(  )
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列写法:
(1){0}∈{1,2,3};(2)∅⊆{0};(3){0,1,2}⊆{1,2,0};(4)0∈∅
其中错误写法的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案