精英家教网 > 高中数学 > 题目详情
如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:;
(Ⅱ)当的中点时,求点到面的距离;
(Ⅲ)等于何值时,二面角的大小为.
(Ⅰ)详见解析;(Ⅱ);(Ⅲ).

试题分析:(Ⅰ)建立空间坐标,分别求出的坐标,利用数量积等于零即可;(Ⅱ)当的中点时,求点到平面的距离,只需找平面的一条过点的斜线段在平面的法向量上的投影即可;(Ⅲ)设,因为平面的一个法向量为,只需求出平面的法向量,然后利用二面角为,根据夹角公式,求出即可.
试题解析:以为坐标原点,直线分别为轴,建立空间直角坐标系,设,则,
(Ⅰ),,故 ;
(Ⅱ)因为的中点,则,从而, ,设平面的法向量为,则 也即,得,从而,所以点到平面的距离为
(Ⅲ)设平面的法向量, 而, 由,即,得,依题意得: , ,解得 (不合,舍去),     ∴时,二面角的大小为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,ABCDAB=4,BCCD=2,AA1=2,EE1F分别是棱ADAA1AB的中点.

(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,为平行四边形,且平面的中点,

(Ⅰ) 求证://
(Ⅱ)若, 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点的中点.

(1)求异面直线所成角的余弦值;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案