精英家教网 > 高中数学 > 题目详情
如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.
(1);(2)垂直,详见解析.

试题分析:(1)作,连.易知,再由余弦定理可得:,则,根据二次函数的知识即可得到其最小值;建立空间直角坐标系,利用空间向量方法,写出的坐标,利用数量积即可求证它们是否垂直.
试题解析:(1)作,连.易知
,由余弦定理可得:
。当时,最小值=
(2)以点为坐标原点,以所在的直线分别为轴建立直角坐标系,由(1)可知,,所以点,,,,,,
,,,
,

即当||达到最小值时,是否都垂直.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交点,EPB上任意一点.

(1)证明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PDAD的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且=4,如图

(Ⅰ)把向量用向量表示出来,并求
(Ⅱ)把向量表示;
(Ⅲ)求所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:;
(Ⅱ)当的中点时,求点到面的距离;
(Ⅲ)等于何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱ABC-A′B′C′,设
AB
=
a
AC
=
b
AA′
=
c
,在面对角线AC′和棱BC上分别取点M、N,使
AM
=k
AC′
BN
=k
BC
(0≤k≤1),求证:三向量
MN
a
c
共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面平面,四边形是正方形,四边形是矩形,且的中点,则与平面所成角的正弦值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱中,,点上且
(1)证明:平面
(2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.如图,在四面体OABC中,G是底面ABC的重心,则等于
A.B.
C.D.

查看答案和解析>>

同步练习册答案