精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交点,EPB上任意一点.

(1)证明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PDAD的值.
(1)见解析(2)∶2
(1)证明 因为PD⊥平面ABCD,∴PDAC,又ABCD是菱形,∴BDAC,又BDPDD,故AC⊥平面PBD,又AC?平面EAC.
所以平面EAC⊥平面PBD.
(2)解 连接OE

因为PD∥平面EAC,所以PDOE,所以OE⊥平面ABCD,又OBD的中点,故此时EPB的中点,以点O为坐标原点,射线OAOBOE所在直线分别为xyz轴,建立空间直角坐标系O-xyz.
OBmOEh,则OAmAB(0,m,0),E(0,0,h),=(-mm,0),=(0,-mh),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(xyz)
n2·=0,且n2·=0,
即-mxmy=0且-myhz=0.
x=1,则yz,则n2
∴cos 45°=|cos〈n1n2〉|=,解得,故PDAD=2h∶2mhm∶2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,,且

(1)证明:平面平面
(2)求直线EC与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,ABCDAB=4,BCCD=2,AA1=2,EE1F分别是棱ADAA1AB的中点.

(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=          .

查看答案和解析>>

同步练习册答案