精英家教网 > 高中数学 > 题目详情
如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.
(1)证明过程详见解析;(2)

试题分析:本题主要考查线线垂直、线面垂直、面面垂直、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,连结OC,由于为等腰三角形,O为AB的中点,所以,利用面面垂直的性质,得平面ABEF,利用线面垂直的性质得,由线面垂直的判定得平面OEC,所以,所以线面垂直的判定得平面,最后利用线面垂直的性质得;第二问,利用向量法,先建立空间直角坐标系,求出平面FCE和平面CEB的法向量,再利用夹角公式求二面角的余弦值,但是需要判断二面角是锐角还是钝角.
试题解析:(1)证明:连结OC,因AC=BC,O是AB的中点,故
又因平面ABC平面ABEF,故平面ABEF,     2分
于是.又,所以平面OEC,所以,     4分
又因,故平面,所以.     6分
(2)由(1),得,不妨设,取EF的中点D,以O为原点,OC,OB,OD所在的直线分别为x,y,z轴,建立空间直角坐标系,设,则
在的直线分别为轴,建立空间直角坐标系,
从而设平面的法向量,由,得,                    9分
同理可求得平面的法向量,设的夹角为,则,由于二面角为钝二面角,则余弦值为                            13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交点,EPB上任意一点.

(1)证明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PDAD的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:;
(Ⅱ)当的中点时,求点到面的距离;
(Ⅲ)等于何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱ABC-A′B′C′,设
AB
=
a
AC
=
b
AA′
=
c
,在面对角线AC′和棱BC上分别取点M、N,使
AM
=k
AC′
BN
=k
BC
(0≤k≤1),求证:三向量
MN
a
c
共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面α的一个法向量为
n1
=(1,2,-2)
,平面β的一个法向量为
n2
=(-2,-4,k)
,若αβ,则k=(  )
A.2B.-4C.-2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱锥中,平面,则与平面所成角的正弦值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正四棱锥P-ABCD的侧棱与底面所成角为60°,MPA中点,连接DM,则DM与平面PAC所成角的大小是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B、C三点的坐标分别为
(1)若的值;  (2)若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面向量,则(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案