【题目】如图,在四棱锥P一ABCD中,已知
,点Q为AC中点,
底面ABCD,
,点M为PC的中点.
![]()
(1)求直线PB与平面ADM所成角的正弦值;
(2)求二面角D-AM-C的正弦值;
(3)记棱PD的中点为N,若点Q在线段OP上,且
平面ADM,求线段OQ的长.
【答案】(1)
;(2)
;(3)
.
【解析】
以O为原点,分别以向量
的方向为x轴,y轴,z轴正方向,可以建立空间直角坐标系,(1)求出直线PB的方向向量,利用向量垂直数量积为零列方程求出平面ADM的法向量,可求直线PB与平面ADM所成角的正弦值;(2)由已知可得
平面
,故
是平面
的一个法向量,结合(1)中平面ADM的法向量,利用空间向量夹角余弦公式可求二面角D-AM-C的余弦值,从而可得正弦值;(3)设线段OQ的长为
,则点Q的坐标为
,由已知可得点N的坐标为
,利用直线
与平面的法向量数量积为零列方程求解即可.
依题意,以O为原点,分别以向量
的方向为x轴,y轴,z轴正方向,可以建立空间直角坐标系(如图),可得
,
.
![]()
(1)依题意,可得
,
设
为平面ADM的法向量,则
,
即
,不妨设
,可得
,
又
, 故
,
直线PB与平面ADM所成角的正弦值为
;
(2)由已知可得
,
所以
平面
,
故
是平面
的一个法向量,
依题意可得
,
因此有
,于是有
,
二面角D-AM-C的正弦值
;
(3)设线段OQ的长为
,则点Q的坐标为
,
由已知可得点N的坐标为
,进而可得
,
由
平面ADM,故
,
即
,解得
,
线段OQ的长为
.
科目:高中数学 来源: 题型:
【题目】某次高三年级模拟考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,作为下一步教学的参考依据,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.
(1)若采用系统抽样法抽样,从编号为001~090的成绩中用简单随机抽样确定的成绩编号为025,求样本中所有成绩编号之和;
(2)若采用分层抽样,按照学生选择A题目或B题目,将成绩分为两层.已知该校高三学生有540人选做A题目,有360人选做B题目,选取的样本中,A题目的成绩平均数为5,方差为2,B题目的成绩平均数为5.5,方差为0.25.
(i)用样本估计该校这900名考生选做题得分的平均数与方差;
(ii)本选做题阅卷分值都为整数,且选取的样本中,A题目成绩的中位数和B题目成绩的中位数都是5.5.从样本中随机选取两个大于样本平均值的数据做进一步调查,求取到的两个成绩来自不同题目的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
是由数列
组成的集合,其中数列
同时满足以下三个条件:
①数列
共有
项,
;②
;③![]()
(1)若等比数列
,求等比数列
的首项、公比和项数;
(2)若等差数列
是递增数列,并且
,常数
,求该数列的通项公式;
(3)若数列
,常数
,
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重
(单位:kg)与身高
(单位:cm)具有线性相关关系,根据一组样本数据
(
),用最小二乘法近似得到回归直线方程为
,则下列结论中不正确的是( )
A.
与
具有正线性相关关系
B.回归直线过样本的中心点![]()
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将数列
的前
项分成两部分,且两部分的项数分别是
,若两部分和相等,则称数列
的前
项的和能够进行
等和分割.
(1)若
,试写出数列
的前
项和所有等和分割;
(2)求证:等差数列
的前
项的和能够进行
等和分割;
(3)若数列
的通项公式为:
,且数列
的前
项的和能够进行等和分割,求所有满足条件的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列六个命题:
(1)若
,则函数
的图像关于直线
对称.
(2)
与
的图像关于直线
对称.
(3)
的反函数与
是相同的函数.
(4)
无最大值也无最小值.
(5)
的最小正周期为
.
(6)
有对称轴两条,对称中心有三个.
则正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com