精英家教网 > 高中数学 > 题目详情
8.若复数Z满足Z=i(2+Z)(i为虚数单位),则Z=(  )
A.1+iB.1-iC.-1+iD.-1-i

分析 由Z=i(2+Z),得$Z=\frac{2i}{1-i}$,再由复数代数形式的乘除运算化简得答案.

解答 解:由Z=i(2+Z),
得$Z=\frac{2i}{1-i}=\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知关于x的实系数方程x2+2ax+b=0在区间(0,1)和(1,2)内各有一根,求:
(1)a2+b2的取值范围;
(2)求|a+b-2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中为偶函数又在(0,+∞)上是增函数的是(  )
A.y=($\frac{1}{2}$)|x|B.y=x2C.y=lnxD.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|1≤2x+5≤13},B={y|y=$\frac{3}{2$x+2,x∈A},则A∩B等于(  )
A.B.[-1,4]C.[-2,4]D.[-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知:an=log(n+1)(n+2)(n∈Z*),若称使乘积a1•a2•a3…an为整数的数n为劣数,则在区间(1,20016)内所有的劣数的和2026.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一个根在区间(0,1)内,另一根在区间(1,2)内,求z=-2b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是定义在[-5,5]上的偶函数,且在区间[0,5]是减函数,若f(2a+3)<f(a),则实数a的取值范围是[-4,-3)∪(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a为非零实数.
(1)讨论函数f(x)的单调性;
(2)若y=f(x)有两个极值点x1,x2,且x1<x2,求证:$\frac{f({x}_{2})}{{x}_{1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x0∈R,有x02=-1;命题q:?x∈(0,$\frac{π}{2}$),有x>sinx.则下列命题是真命题的是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

同步练习册答案