精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数满足:(1);(2);(3)时,.大小关系

A. B.

C. D.

【答案】C

【解析】

根据已知可得函数 fx)的图象关于直线x=1对称,周期为4,且在[1,3]上为减函数,进而可比较f(2018),f(2019),f(2020)的大小.

∵函数 fx)满足:

f(2﹣x)=fx),故函数的图象关于直线x=1对称;

fx+4)=fx),故函数的周期为4;

x1x2[1,3]时,(x1x2)[fx1)﹣fx2)]<0.故函数在[1,3]上为减函数;

f(2018)=f(2),

f(2019)=f(3),

f(2020)=f(0)=f(2),

f(2020)=f(2018)>f(2019),

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的50名学生中有40人比较细心,另外10人比较粗心;在数学成绩不及格的50名学生中有20人比较细心,另外30人比较粗心.

1)试根据上述数据完成列联表:

数学成绩及格

数学成绩不及格

合计

比较细心

40

比较粗心

合计

50

100

2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点与椭圆的一个焦点重合,椭圆的左、右顶点分别为是椭圆上一点,记直线的斜率为,且有.

1)求椭圆的方程;

2)若过点的直线与椭圆相交于不同两点,且满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点P21).

1)求椭圆C的方程,并求其离心率;

2)过点Px轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'PC交于另一点B.设O为原点,判断直线AB与直线OP的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCDPAPDPA与平面PBC所成角的正弦值为

1)求侧棱PA的长;

2)设EAB中点,若PA≥AB,求二面角BPCE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足(O为坐标原点),记点P的轨迹为C.

(1)求曲线C的方程;

(2)已知定点M(,0),N(,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.

查看答案和解析>>

同步练习册答案