精英家教网 > 高中数学 > 题目详情

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的50名学生中有40人比较细心,另外10人比较粗心;在数学成绩不及格的50名学生中有20人比较细心,另外30人比较粗心.

1)试根据上述数据完成列联表:

数学成绩及格

数学成绩不及格

合计

比较细心

40

比较粗心

合计

50

100

2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】1)列联表见解析;(2)能.

【解析】

1根据题意填写2×2列联表即可;2根据2×2列联表求得K2的观测值,对照临界值表即可得出结论.

1)填写的列联表如下:

数学成绩及格

数学成绩不及格

合计

比较细心

40

20

60

比较粗心

10

30

40

合计

50

50

100

2)根据列联表可以求得的观测值

所以能在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,下列函数中,在其定义域内是单调递增函数且图象关于原点对称的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a.

1)若函数处取得极小值,求ab的值;

2)求函数的单调递增区间;

3)若函数上只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,侧面B1BCC1是正方形,MN分别是A1B1AC的中点,AB⊥平面BCM

(Ⅰ)求证:平面B1BCC1⊥平面A1ABB1

(Ⅱ)求证:A1N∥平面BCM

(Ⅲ)若三棱柱ABC-A1B1C1的体积为10,求棱锥C1-BB1M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值,并求综合评分的中位数;

2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:(1);(2);(3)时,.大小关系

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案