精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中a.

1)若函数处取得极小值,求ab的值;

2)求函数的单调递增区间;

3)若函数上只有一个极值点,求实数的取值范围.

【答案】12)见解析;(3.

【解析】

1)首先对函数求导,根据题意,得到,得到所满足的等量关系,求得结果;

2)对函数求导,并进行因式分解得到,比较2的大小,从而进行分类讨论,进而确定函数的单调区间;

3)函数上只有一个极值点,等价于上只有一个解,结合(2)及零点存在性定理可得,从而求得的范围.

1)因为

所以,得.

,解得.

2)因为

,得.

时,的单调递增区间为

时,的单调递增区间为

时,的单调递增区间为.

3)由题意可得,即

化简得

解得

所以a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的函数,其导函数.

1)如果函数处有极值,求函数的表达式;

2)当时,函数的图象上任一点P处的切线斜率为k,若,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为菱形,底面,点上的一个动点,.

(1)当时,求证:

(2)当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出对农村要坚持精准扶贫,至 2020 年底全面脱贫. 现有扶贫工作组到某山区贫困村实施脱贫工作. 经摸底排查,该村现有贫困农户 100 家,他们均从事水果种植, 2017 年底该村平均每户年纯收入为 1 万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数. 从 2018 年初开始,若该村抽出 5x 户( x ∈Z,1 ≤x ≤ 9) 从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高,而从事包装销售农户的年纯收入每户平均为 (3-x) 万元(参考数据: 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).

(1) 至 2020 年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于 1 万 6 千元),至少抽出多少户从事包装、销售工作?

(2) 至 2018 年底,该村每户年均纯收人能否达到 1.35 万元?若能,请求出从事包装、销售的户数;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析.若得分低于分,说明不满意,若得分不低于分,说明满意,调查满意度得分情况结果用茎叶图表示如图1.

)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;

满意

不满意

合计

岁以下

岁以上

合计

)先采用分层抽样的方法从岁及以下的网友中选取人,再从这人中随机选出人,将频率视为概率,求选出的人中至少有人是不满意的概率.

)将频率视为概率,从参与调查的岁以上的网友中,随机选取人,记其中满意度为满意的人数为,求的分布列和数学期望.

参考格式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的50名学生中有40人比较细心,另外10人比较粗心;在数学成绩不及格的50名学生中有20人比较细心,另外30人比较粗心.

1)试根据上述数据完成列联表:

数学成绩及格

数学成绩不及格

合计

比较细心

40

比较粗心

合计

50

100

2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCDPAPDPA与平面PBC所成角的正弦值为

1)求侧棱PA的长;

2)设EAB中点,若PA≥AB,求二面角BPCE的余弦值.

查看答案和解析>>

同步练习册答案