精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面为菱形,底面,点上的一个动点,.

(1)当时,求证:

(2)当平面时,求二面角的余弦值.

【答案】(1)见证明;(2)

【解析】

(1)由已知可得PA可证平面,所以,可证平面,从而得到证明;(2)连接,当平面时,,以为原点,分别以轴,轴,轴建立空间直角坐标系.求平面和平面PBD的法向量,利用两个法向量的数量积计算即可得结果.

(1)因为底面平面

所以

为菱形,连接,所以.

又因为平面平面

所以平面

又因为平面,所以,又因为

平面

平面,所以平面,又因为平面

所以.

(2)法一:因为平面平面

平面平面

从而

平面,又因为.以为原点,

分别以轴,轴,轴建立空间直角坐标系.

设平面的法向量为

因为

,得

,则.

设平面的法向量为,因为平面

可设

设二面角的平面角为,由图可知为锐角,从而

法二:因为在平面,在平面中,

从而为二面角的平面角,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性,并指出其单调区间;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥是平行四边形,

1)证明:平面平面PCD

2)求直线PA与平面PCB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程是是参数, ),直线的参数方程是是参数),曲线与直线有一个公共点在轴上,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系

(1)求曲线的极坐标方程;

(2)若点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求函数的极值;

2)当时,若不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a.

1)若函数处取得极小值,求ab的值;

2)求函数的单调递增区间;

3)若函数上只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm

I)按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.

查看答案和解析>>

同步练习册答案