精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a、b、c,若B=60°,且cos(B+C)=-
11
14
,则cosC的值为
1
7
1
7
分析:由cos(B+C)的值,利用诱导公式及三角形的内角和定理得到cosA的值,根据A为三角形的内角,利用同角三角函数间的基本关系求出sinA的值,再由B的度数求出sinB及cosB的值,然后再利用诱导公式及三角形的内角和定理化简cosC,得到cosC=-cos(A+B),利用两角和与差的余弦函数公式化简后,将各自的值代入即可求出值.
解答:解:∵cos(B+C)=-cosA=-
11
14
,∴cosA=
11
14

又A为三角形的内角,∴sinA=
1-cos2A
=
5
3
14

∵B=60°,∴sinB=
3
2
,cosB=
1
2

则cosC=-cos(A+B)=-cosAcosB+sinAsinB=-
1
2
×
11
14
+
5
3
14
×
3
2
=
1
7

故答案为:
1
7
点评:此题考查了两角和与差的余弦函数公式,同角三角函数间的基本关系,诱导公式的作用,以及特殊角的三角函数值,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案