精英家教网 > 高中数学 > 题目详情
9.等腰直角三角形ABC中,AB=AC=4,且2$\overrightarrow{AE}$=$\overrightarrow{EC}$,$\overrightarrow{BD}$=$\overrightarrow{DC}$,则$\overrightarrow{BE}$•$\overrightarrow{AD}$=-$\frac{16}{3}$.

分析 求得$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,由中点向量表示和向量共线,$\overrightarrow{BE}$、$\overrightarrow{AD}$统一成$\overrightarrow{AB}$、$\overrightarrow{AC}$表示,再由向量数量积的性质:向量的平方即为模的平方,计算即可得到所求值.

解答 解:$\overrightarrow{AB}$•$\overrightarrow{AC}$=4×4×cos90°=0,
2$\overrightarrow{AE}$=$\overrightarrow{EC}$,$\overrightarrow{BD}$=$\overrightarrow{DC}$,
则$\overrightarrow{BE}$•$\overrightarrow{AD}$=($\overrightarrow{AE}$-$\overrightarrow{AB}$)•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)
=($\frac{1}{3}$$\overrightarrow{AC}$-$\overrightarrow{AB}$)•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)
=$\frac{1}{6}$$\overrightarrow{AC}$2-$\frac{1}{2}$$\overrightarrow{AB}$2-$\frac{1}{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$
=$\frac{1}{6}$×16-$\frac{1}{2}$×16=-$\frac{16}{3}$.
故答案为:-$\frac{16}{3}$.

点评 本题考查向量数量积的定义和性质,主要是向量的平方即为模的平方,以及中点向量表示,向量共线等,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1上的点,DC1⊥BD.
(Ⅰ)求证:D为AA1中点;
(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=16,O为AB上一点,且BO=8,线段OC、OD、MN为表演队列所在位置(M,N分别在线段OD、OC上),点P为领队位置,且P到BC、CD的距离均为12,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
(1)当d为何值时,P为队列MN的中点?
(2)怎样安排M的位置才能使观赏效果最好?求出此时d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≤0\\ x≤2\\ y≥\frac{1}{2}\end{array}\right.$,则$2x+\frac{1}{y}$的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={y|y=x},N={x|x2+y2=1},则M∩N=(  )
A.{($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}B.{(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司对新招聘的40名业务人员迸行业务培训,现按新业务员的年龄(单位:岁)进行分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)培训中有一个传球活动:音乐响起,按特定顺序开始第1次传一个球,音乐停时,球在谁手,谁就表演一个节目,表演完毕后,从表演者开始下一次传球,如此进行3次,若以频率为概率,且停音乐是随机的,求至少有2次表演者的年龄在[20,30)的概率;
(2)培训前决定在年龄在[35,45]的新业务员中任意选出3名小组长,设年龄在[40,45]中选取的人数为X,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{x^2}{9}+\frac{y^2}{8}=1$的左、右焦点分别为F1,F2,点P是椭圆上一点,且$\overrightarrow{{F_1}{F_2}}•\overrightarrow{P{F_2}}=0$,则|PF1|等于(  )
A.$\frac{10}{3}$B.$\frac{5}{3}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现有A社区1人、B社区2人、C社区3人共6人站成一排照相,若B社区2人站两端,C社区3人中有且只有两位相邻,则所有不同的排法的种数是(  )
A.12B.24C.36D.72

查看答案和解析>>

同步练习册答案