精英家教网 > 高中数学 > 题目详情
14.已知集合M={y|y=x},N={x|x2+y2=1},则M∩N=(  )
A.{($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}B.{(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}C.(-1,1)D.[-1,1]

分析 运用函数的值域和圆方程的性质,化简集合M,N,再由交集的定义,即可得到所求集合.

解答 解:集合M={y|y=x}=R,
N={x|x2+y2=1}=[-1,1],
则M∩N=[-1,1].
故选:D.

点评 本题考查集合的交集的求法,注意运用函数的值域和圆方程的性质,考查定义法的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是公差为d的等差数列,在{an}的每相邻两项之间插入这两项的算术平均值,得到新数列{an(1)},这样的操作叫做该数列的1次“A”扩展,连续m次“A”扩展,得到新数列{an(m)}.例如:数列1,2,3第1次“A”扩展后得到数列1,$\frac{3}{2}$,2,$\frac{5}{2}$,3;第2次“A”扩展后得到数列1,$\frac{5}{4}$,$\frac{3}{2}$,$\frac{7}{4}$,2,$\frac{9}{4}$,$\frac{5}{2}$,$\frac{11}{4}$,3.
(1)求证:{an(m)}为等差数列,并求其公差dm
(2)已知等差数列{an}共有n项,且a1=1,d=1,{an(m)}的所有项的和为Sn(m),求使Sn(n2)-n2>2017,成立的n的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算化简:
(1)$\frac{{cos10°-\sqrt{3}sin10°}}{sin20°}$
(2)已知角α的终边上有一点($\sqrt{3}$,-1),求$\frac{sin(2π-α)tan(π+α)cot(-α-π)}{cos(π-α)tan(3π-α)sin(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合$M=\{x|y=\sqrt{2x-{x^2}}\},N=\{x|x≤a\}$,若M⊆N,则实数a的取值范围是(  )
A.0≤a≤2B.0≤aC.2≤aD.a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等腰直角三角形ABC中,AB=AC=4,且2$\overrightarrow{AE}$=$\overrightarrow{EC}$,$\overrightarrow{BD}$=$\overrightarrow{DC}$,则$\overrightarrow{BE}$•$\overrightarrow{AD}$=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知an=n2cos(nπ)-2nsin2($\frac{nπ}{2}$),则a1+a2+a3+…+100=(  )
A.-5050B.10100C.50D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.高一(23)班8个同学参加独唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别为(  )
A.91.5和91.5B.91.5和92C.91和91.5D.92和92

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.上午要上语文、数学、体育和外语四门功课,体育教师不能上第一节,数学教师不上第四节,则不同排课方案的种数是(  )
A.24B.22C.20D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若0<x<$\frac{π}{2}$,则4x与3sinx的大小关系是(  )
A.4x<3sinxB.4x>3sinxC.4x=3sinxD.与x取值有关

查看答案和解析>>

同步练习册答案